GU Jiaojiao, LI Bingzhen, LIU Ke, JIANG Wenzhi. Infrared Ship Target Detection Algorithm Based on Improved Faster R-CNN[J]. Infrared Technology , 2021, 43(2): 170-178.
Citation: GU Jiaojiao, LI Bingzhen, LIU Ke, JIANG Wenzhi. Infrared Ship Target Detection Algorithm Based on Improved Faster R-CNN[J]. Infrared Technology , 2021, 43(2): 170-178.

Infrared Ship Target Detection Algorithm Based on Improved Faster R-CNN

More Information
  • Received Date: June 10, 2020
  • Revised Date: July 05, 2020
  • To solve the problem of insufficient feature extraction and repeated detection of infrared ship targets by the Faster R-CNN algorithm, a ship target detection algorithm based on an improved Faster R-CNN is proposed. First, three feature graphs are drawn from the backbone network, VGG-16, after a three-segment convolution, and the features are spliced to form a multi-scale feature graph to obtain a feature vector with richer semantic information; second, the Anchor is improved based on the dataset, and the number and size of the Anchor boxes are reset; finally, the loss function of the improved Faster R-CNN is optimized to improve the feature extraction ability of the target. An analysis of the experimental results on the test dataset demonstrates that the average accuracy of the improved detection algorithm was 83.98%, which is 3.95% higher than that of the original Faster RCNN.
  • [1]
    施泽浩, 赵启军. 基于全卷积网络的目标检测算法[J]. 计算机技术与发展, 2018(5): 55-58. DOI: 10.3969/j.issn.1673-629X.2018.05.013

    SHI Zehao, ZHAO Qijun. Target detection algorithm based on full convolution network[J]. Computer Technology and Development, 2018(5): 55-58. DOI: 10.3969/j.issn.1673-629X.2018.05.013
    [2]
    Uijlings J R R, Sande K E A V D, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. DOI: 10.1007/s11263-013-0620-5
    [3]
    Girshick R. Fast R-CNN[C]//Proceedings of ICCV, 2015, 2015: 1440-1448.
    [4]
    Kaiming H, Georgia G, Piotr D, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 18(11): 1-1.
    [5]
    Ren S, He K, Girshick R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
    [6]
    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of CVPR, 2015: 779-788.
    [7]
    Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017, 12(7): 6517-6525.
    [8]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision-ECCV 2016, Cham: Springer, 2016, 9905: 21-37.
    [9]
    FU C Y, LIU W, Ranga A, et al. DSSD: deconvolutional single shot detector[C]//2017 IEEE International Conference on Computer Vision, 2017: 2999-3007.
    [10]
    Redmon J, Farhadi A. YOLO v3: An incremental improvement [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018, 24(9): 2458-2476.
    [11]
    李慕锴, 张涛, 崔文楠. 基于YOLOv3的红外行人小目标检测技术研究[J]. 红外技术, 2020, 42(2): 176-181. http://hwjs.nvir.cn/article/id/hwjs202002012

    LI Muyi, ZHANG Tao, CUI Wennan. Research on infrared pedestrian small target detection technology based on YOLO v3[J]. Infrared Technology, 2020, 42(2): 176-181. http://hwjs.nvir.cn/article/id/hwjs202002012
    [12]
    崔少华, 李素文, 黄金乐, 等. 改进的CNN用于单帧红外图像行人检测的方法[J]. 红外技术, 2020, 42(3): 238-244. http://hwjs.nvir.cn/article/id/hwjs202003006

    CUI Shaohua, LI Suwen, HUANG Jinle, et al. Improved CNN square method for human detection of single-frame infrared image[J]. Infrared Technology, 2020, 42(3): 238-244. http://hwjs.nvir.cn/article/id/hwjs202003006
    [13]
    向涛. 一种基于显著区域提取的红外图像舰船目标检测方法[J]. 电讯技术, 2020, 60(7): 50-56.

    XIANG Tao. A ship target detection method based on salient region extraction in infrared image[J]. Telecommunication Technology, 2020, 60(7): 50-56.
    [14]
    邢莎, 吉林, 雍杨, 等. 基于梯度统计特性的自动红外舰船目标检测[J]. 数字技术与应用, 2013(10): 66-68, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJT201310047.htm

    XING Sha, JI Lin, YONG Yang, et al. Automatic infrared ship target detection based on gradient statistics[J]. Digital Technology and Applications, 2013(10): 66-68, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJT201310047.htm
    [15]
    宫剑, 吕俊伟, 刘亮, 等. 红外偏振图像的舰船目标检测[J]. 光谱学与光谱分析, 2020, 40(2): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202002052.htm

    GONG Jian, LV Junwei, LIU Liang, et al. Ship target detection based on infrared polarization image[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202002052.htm
    [16]
    吴天舒, 张志佳, 刘云鹏. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程, 2018(7): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807007.htm

    WU Tianshu, ZHANG Zhijia, LIU Yunpeng. Lightweight small beacon detection algorithm based on improved SSD[J]. Infrared and Laser Engineering, 2018(7): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807007.htm
    [17]
    WANG Zijie J, Robert Turko, Omar Shaikh, et al. CNN explainer: learning convolutional neural networks with interactive visualization[J]. Journal of Sensors, 2019(6): 1-13. http://ieeexplore.ieee.org/document/8941872/
    [18]
    Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]// Proceedings of the European Conference on Computer Vision, Berlin, Heidelberg: Springer, 2014, 8689: 818-833.
  • Cited by

    Periodical cited type(28)

    1. 黎煜培,王忠华. 基于局部全局自注意与空间通道稀疏增强的红外船舶目标检测算法研究. 红外与激光工程. 2025(03): 348-360 .
    2. 郝志航,张小咏,陈正超,卢凯旋. 基于改进的Faster R-CNN污水处理厂目标提取. 河南理工大学学报(自然科学版). 2024(01): 68-77 .
    3. 邵延华,黄琦梦,梅艳莹,张晓强,楚红雨,吴亚东. 一种基于多尺度的目标检测锚点构造方法. 红外技术. 2024(02): 162-167 . 本站查看
    4. 汪西晨,彭富伦,李业勋,张俊举. 基于改进Faster R-CNN的红外目标检测算法. 应用光学. 2024(02): 346-353 .
    5. 刘玉洁,补冲. 基于多特征融合的舰船目标检测方法研究. 舰船科学技术. 2024(09): 164-167 .
    6. 贾春荣,杨帆,高建鑫,沈萌萌,卓越,邸志刚. 海洋舰船目标红外检测技术研究. 激光杂志. 2024(06): 13-20 .
    7. 张兴平,邵延华,梅艳莹,张晓强,楚红雨. 融合视觉显著性的红外航拍行人检测. 红外技术. 2024(09): 1043-1050 . 本站查看
    8. 姜杰,张立民,刘凯,闫文君. 基于改进PP-YOLOE和ByteTrack算法的红外船舶目标检测跟踪方法. 兵器装备工程学报. 2024(11): 291-297 .
    9. 臧涛,傅志凌,王喆,钮赛赛,王梦如,杨海. 改进YOLOv3的红外弱小目标检测. 计算机工程与设计. 2024(11): 3479-3485 .
    10. 郭勇,张凯. 基于特征增强的快速红外目标检测. 无线电工程. 2023(01): 47-55 .
    11. 白玉,迟文恺,谢宝蓉,张雷,郑莲玉,穆文涛. 结合目标提取和深度学习的红外舰船检测. 电讯技术. 2023(02): 193-198 .
    12. 王馨悦,周小天. 基于视觉识别的智能翻译机器人人机交互系统研究. 自动化与仪器仪表. 2023(05): 207-211 .
    13. 张廓,陈章进,张岩. 改进YOLOv4-Tiny的SAR图像目标快速检测方法. 计算机工程与应用. 2023(14): 209-216 .
    14. 李向荣,孙立辉. 融合注意力机制的多尺度红外目标检测. 红外技术. 2023(07): 746-754 . 本站查看
    15. 娄树理,王岩,郭建勤,公维锋. 改进YOLOX-S的红外舰船目标检测算法. 应用光学. 2023(05): 1054-1060 .
    16. 王岩,娄树理. 一种改进的SSD红外舰船目标检测算法. 烟台大学学报(自然科学与工程版). 2023(04): 487-493 .
    17. 戴永东,姚建光,李勇,毛锋,文志科,倪莎. 输电线路无人机巡检自主导航算法研究. 重庆理工大学学报(自然科学). 2023(11): 221-228 .
    18. 林鹏宇,马晓珊,彭晓东. 基于仿真模板和SuperGlue的舰船匹配检测. 计算机仿真. 2023(11): 11-15 .
    19. 贺翥祯,李敏,苟瑶,杨爱涛. 改进YOLOv5的合成孔径雷达图像舰船目标检测方法. 系统工程与电子技术. 2023(12): 3743-3753 .
    20. 王勇,王柏容,慕东东. 红外船舶检测的研究现状及展望. 大连海事大学学报. 2023(04): 103-115 .
    21. 黄强,王钰宁,刘晓霞,胡云冰. 改进YOLOv3-SPP的SAR图像舰船目标检测. 遥感信息. 2023(05): 57-65 .
    22. 谭显东,彭辉. 改进YOLOv5的SAR图像舰船目标检测. 计算机工程与应用. 2022(04): 247-254 .
    23. 李秀娟,李军怀,乔路琪. 基于深度学习的可见光舰船目标检测与识别. 无线电工程. 2022(03): 484-491 .
    24. 陈初侠,丁勇. 基于多尺度语义网络的红外舰船目标检测. 红外技术. 2022(05): 529-536 . 本站查看
    25. 陈天文. 无线网络在船舶多目标检测系统中的应用. 舰船科学技术. 2022(12): 137-140 .
    26. 周正,崔宗勇,曹宗杰,杨建宇. 基于特征转移金字塔网络的SAR图像跨尺度目标检测. 雷达学报. 2021(04): 544-558 .
    27. 张宏群,班勇苗,郭玲玲,金云飞,陈檑. 基于YOLOv5的遥感图像舰船的检测方法. 电子测量技术. 2021(08): 87-92 .
    28. 毕振波,张世友,杨花,吴远红. 基于浅层机器学习的视频监控船舶检测综述. 系统仿真学报. 2021(12): 2792-2807 .

    Other cited types(28)

Catalog

    Article views (722) PDF downloads (150) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return