LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
Citation: LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.

Multiscale Infrared Target Detection Based on Attention Mechanism

More Information
  • Received Date: April 09, 2022
  • Revised Date: July 19, 2022
  • To address the problems of poor textural detail, low contrast, and poor target detection in infrared images, a multiscale infrared target detection model that integrates a channel attention mechanism is proposed based on Yolov4 (You Only Look Once version 4). First, the number of model parameters is reduced by reducing the depth of the backbone feature extraction network. Second, to supplement the shallow high-resolution feature information, the multiscale feature fusion module is reconstructed to improve the utilization of the feature information. Finally, before the multiscale feature map is generated, the channel attention mechanism is integrated to further improve the infrared feature extraction ability and reduce noise interference. The experimental results show that the size of the algorithm model in this study was only 28.87% of the Yolov4. The detection accuracy of the infrared targets also significantly improved.
  • [1]
    史泽林, 冯斌, 冯萍. 基于波前编码的无热化红外成像技术综述(特邀)[J]. 红外与激光工程, 2022, 51(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202201003.htm

    SHI Zelin, FENG Bin, FENG Ping. An overview of non thermal infrared imaging technology based on wavefront coding (invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202201003.htm
    [2]
    CHEN C, LI H, WEI Y, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 52(1): 574-581.
    [3]
    LIU R, LU Y, GONG C, et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology, 2012, 55(4): 380-387.
    [4]
    Teutsch M, Muller T, Huber M, et al. Low resolution person detection with a moving thermal infrared camera by hot spot classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, 2014: 209­216.
    [5]
    HAO Q, ZHANG L, WU X, et al. Multiscale object detection in infrared streetscape images based on deep learning and instance level data augmentation[J]. Applied Sciences, 2019, 9(3): 565. DOI: 10.3390/app9030565
    [6]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
    [7]
    GU Jiaojiao, LI Bingzhen, LIU Ke, et al Infrared ship target detection algorithm based on improved Faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170-178. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202307012.htm
    [8]
    REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
    [9]
    刘智嘉, 汪璇, 赵金博, 等. 基于YOLO算法的红外图像目标检测的改进方法[J]. 激光与红外, 2020, 50(12): 1512-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012015.htm

    LIU Zhijia, WANG Xuan, ZHAO Jinbo, et al. An improved method of infrared image target detection based on YOLO algorithm[J]. Laser and Infrared, 2020, 50(12): 1512-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012015.htm
    [10]
    Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
    [11]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Pro-ceedings of the IEEE Conference On Computer Vision and Pattern Recognition, 2018: 7132-7141.
    [12]
    Bochkovskiy A, Wang C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv: 2004.10934, 2020.
    [13]
    LIN T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]//Computer Vision and Pattern Recognition(CVPR), 2017: 2117-2125.
    [14]
    LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Computer Vision and Pattern Recognition(CVPR), 2018: 8759-8768.
    [15]
    LUO Y, CAO X, ZHANG J, et al. CE-FPN: enhancing channel information for object detection[J/OL]. arXiv preprint arXiv: 2103. 10643, 2021.
    [16]
    谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22): 247-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202122029.htm

    XIE Junzhang, PENG Hui, TANG Jianfeng, et al. Improved dense remote sensing target detection of YOLOv4[J]. Computer Engineering and Application, 2021, 57(22): 247-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202122029.htm
    [17]
    鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202013016.htm

    JU Muran, LUO Jiangning, WANG Zhongbo, et al. Multi scale target detection algorithm integrating attention mechanism[J]. Journal of Optics, 2020, 40(13): 132-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202013016.htm
    [18]
    TAN M, PANG R, LE Q V. Efficient det: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
    [19]
    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [20]
    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
    [21]
    Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-727.
  • Related Articles

    [1]YANG Dawei, YANG Mingsheng, FU Bo. Improved YOLOv7 for Multi-Target Detection of Infrared Images of Power Equipment[J]. Infrared Technology , 2025, 47(3): 326-334.
    [2]LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379.
    [3]YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292.
    [4]GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005.
    [5]WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.
    [6]SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Infrared Image Object Detection Method Based on DCS-YOLOv8 Model[J]. Infrared Technology , 2024, 46(5): 565-575.
    [7]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [8]GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51.
    [9]SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197.
    [10]DAI Jian, ZHAO Xu, LI Lianpeng, LIU Wen, CHU Xinyue. Improved YOLOv5-based Infrared Dim-small Target Detection under Complex Background[J]. Infrared Technology , 2022, 44(5): 504-512.

Catalog

    Article views (182) PDF downloads (43) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return