WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.
Citation: WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.

Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s

More Information
  • Received Date: April 16, 2023
  • Revised Date: May 16, 2023
  • Available Online: July 24, 2024
  • To enhance the recognition efficiency of UAVs in dark conditions and reduce missed detections and delays in complex environments and road conditions, this study proposes an improved YOLOv5s-GN-CB infrared image recognition method. This method enhances the efficiency of UAV infrared aerial images for detecting vehicles, people, and other types of targets. The main improvements to YOLOv5s achieved in this study include the following three aspects: 1) introducing the Ghost module into the YOLOv5s backbone network and incorporating NWD loss into Ghost; 2) adding the coordinate attention (CA) mechanism; 3) incorporating a weighted bidirectional feature pyramid network (BiFPN). The improved YOLOv5s-GN-CB detection model achieves an average accuracy of 95.1% (mAP@0.5) on the InfiRay infrared aerial photography man-vehicle detection dataset, with the FPS increased to 75.188 frames per second. Compared with the original YOLOv5 model, the average accuracy and FPS are improved by 4.2% and 12.02%, respectively. In the same scenario, the detection accuracy of UAV aerial photography infrared image target recognition has been significantly improved, and the delay rate has decreased.

  • [1]
    张志强, 王萍, 于旭东, 等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报, 2020, 41(5): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005002.htm

    ZHANG Zhiqiang, WANG Ping, YU Xudong, et al. Research on high-precision infrared thermal imaging temperature measurement technology [J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005002.htm
    [2]
    Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. 2018-04-08, [2022-08-12]. https://arxiv.org/abs/1804.02767.
    [3]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Computer Vision-ECCV, 2016: 21-37.
    [4]
    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
    [5]
    ZHAO Z Y, YANG X X, ZHOU Y CH, et al. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection[J]. Scientific Reports, 2021, 11(1): 1-15. DOI: 10.1038/s41598-020-79139-8
    [6]
    WANG J, CHEN Y, GAO M, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J/OL]. arXiv: 2112.08782, https://arxiv.org/abs/2112.08782
    [7]
    WEI Yi, LI Xiaofei, LIN Lihui, et al. Causal discovery on discrete data via weighted normalized wasserstein distance[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4911-4923. Doi: 10.1109/TNNLS.2022.3213641
    [8]
    HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
    [9]
    TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
    [10]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
    [11]
    Nawaz Marriam, Nazir Tahira, Baili Jamel, et al. CXray-EffDet: chest disease detection and classification from X-ray images using the efficientdet model[J]. Diagnostics, 2023, 13(2): 248-248. DOI: 10.3390/diagnostics13020248
    [12]
    HAO Hongyun, FANG Peng, DUAN Enze, et al. A dead broiler inspection system for large-scale breeding farms based on deep learning[J]. Agriculture, 2022, 12(8): 1176-1176. DOI: 10.3390/agriculture12081176
    [13]
    郭吉朋. 基于YOLOv3模型的实时目标检测算法的FPGA实现[D]. 武汉: 华中科技大学, 2020. DOI: 10.27157/d.cnki.ghzku.2020.004780.

    GUO Jipeng. FPGA implementation of real-time object detection algorithm based on YOLOv3 model[D]. Wuhan: Huazhong University of Science and Technology, 2020. DOI: 10.27157/d.cnki.ghzku.2020.004780.
    [14]
    Aliyi Salih, Dese Kokeb, Raj Hakkins. Detectio of gastrointestinal tract disorders using deep learning methods from colonoscopy images and videos[J]. Scientific African, 2023, 20: e01628. DOI: 10.1016/j.sciaf.2023.e01628
    [15]
    王新彦, 易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报, 2023, 44(3): 171-176. DOI: 10.13733/j.jcam.issn.2095-5553.2023.03.024.

    WANG Xinyan, YI Zhengyang. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechannization, 2023, 44(3): 171-176. DOI: 10.13733/j.jcam.issn.2095-5553.2023.03.024.
    [16]
    徐正军, 张强, 许亮. 一种基于改进YOLOv5s-Ghost网络的交通标志识别方法[J]. 光电子·激光, 2023, 34(1): 52-61. DOI:10.16136/j.joel. 2023.01.0216.

    XU Zhengjun, ZHANG Qiang, XU Liang. Research on obstacle detection method for working environment of lawn mower robot based on improved YOLOv5[J]. Journal of Optoelectronics Laser, 2023, 34(1): 52-61. DOI:10.16136/j.joel. 2023.01.0216.
    [17]
    党宏社, 党晨, 张选德. 基于改进YOLOv5s的交通标志识别算法[J]. 实验技术与管理, 2022, 39(9): 97-102. DOI: 10.16791/j.cnki.sjg.2022.09.016.

    DANG Hongshe, DANG Chen, ZHANG Xuande. Traffic sign recognition algorithm based on improved YOLOv5s[J]. Experimental Technology and Management, 2022, 39(9): 97-102. DOI: 10.16791/j.cnki.sjg.2022.09.016.
  • Cited by

    Periodical cited type(4)

    1. 王敷轩,庞珊. 基于多粒度跨模态特征增强的红外与可见光图像融合. 东莞理工学院学报. 2024(03): 32-37 .
    2. 李立,易诗,刘茜,程兴豪,王铖. 基于密集残差生成对抗网络的红外图像去模糊. 红外技术. 2024(06): 663-671 . 本站查看
    3. 杨艳春,雷慧云,杨万轩. 基于快速联合双边滤波器和改进PCNN的红外与可见光图像融合. 红外技术. 2024(08): 892-901 . 本站查看
    4. 陈广秋,温奇璋,尹文卿,段锦,黄丹丹. 用于红外与可见光图像融合的注意力残差密集融合网络. 电子测量与仪器学报. 2023(08): 182-193 .

    Other cited types(4)

Catalog

    Article views (106) PDF downloads (60) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return