Citation: | YANG Dawei, YANG Mingsheng, FU Bo. Improved YOLOv7 for Multi-Target Detection of Infrared Images of Power Equipment[J]. Infrared Technology , 2025, 47(3): 326-334. |
To address issues such as a large number of targets, similar appearance, and easy to miss detection and misdetection when the background and target are of similar color in substation infrared images, a multi-target detection method is proposed for electric power equipment by improving YOLOv7. First, to better retain the shallow information in the infrared image, cavity convolution and mean pooling were introduced into a spatial pyramid pooling cross-stage partial convolution (SPPCSPC) module, to expand the receptive field while preventing small infrared targets from being submerged in the background. Second, to deal with misdetection and detection omission in multi-target detection, a lightweight simple attention module (SimAM) was introduced into the head network to focus on the region of interest. Finally, a hybrid edge regression loss function suitable for small-target detection, combining the normalized Gaussian Wasserstein distance (NWD) and complete intersection over union (CIOU) losses, was chosen to effectively improve the accuracy of target detection at different scales in infrared images. We conducted comparison experiments with seven other representative detection methods using a self-constructed infrared image dataset of power equipment. The experimental results showed that the improved YOLOv7 network model significantly improves leakage detection and reduced false detection. Its mean average precision (mAP) reached 88.9%, which is a significant improvement compared with those of other representative target detection algorithms for infrared multi-target detection of power equipment.
[1] |
刘喜梅, 马俊杰. 泛在电力物联网在电力设备状态监测中的应用[J]. 电力系统保护与控制, 2020, 48(14): 69-75.
LIU X M, MA J J. Application of the ubiquitous power Internet of Things in state monitoring of power equipment[J]. Power System Protection and Control, 2020, 48(14): 69-75.
|
[2] |
赵洪山, 张则言, 孟航, 等. 基于高压绝缘套管纹理特征的红外目标检测[J]. 红外技术, 2021, 43(3): 258-265. http://hwjs.nvir.cn/article/id/6faf1628-98fa-4a3a-ade2-7c8d0abf7dae
ZHAO H S, ZHANG Z Y, MENG H, et al. Infrared target detection of high voltage insulation bushing based on textural features[J]. Infrared Technology, 2021, 43(3): 258-265. http://hwjs.nvir.cn/article/id/6faf1628-98fa-4a3a-ade2-7c8d0abf7dae
|
[3] |
郑婷婷, 周浩, 王秋忆. 基于改进YOLOv5的电力设备检测算法[J]. 电子测量技术, 2023, 46(4): 155-160.
ZHENG T T, ZHOU H, WANG Q Y. Power equipment detection algorithm based on improved YOLOv5[J]. Electronic Measurement Technology, 2023, 46(4): 155-160.
|
[4] |
任新辉. 基于红外技术的变电站设备识别与热故障诊断[D]. 成都: 西南交通大学, 2016.
REN X H. Substation Equipment Recognition and Thermal Fault Diagnosis Based on Infrared Technology[D]. Chengdu: Southwest Jiaotong University, 2016.
|
[5] |
尹阳. 基于红外图像的变电站设备识别与热状态监测系统研究[D]. 西安: 西安科技大学, 2018.
YIN Y. Research on Substation Equipment Recognition and Thermal Status Monitoring System Based on Infrared Images[D]. Xi'an: Xi'an University of Science and Technology, 2018.
|
[6] |
Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV), IEEE, 2015: 1440-1448.
|
[7] |
REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|
[8] |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified Real-Time Object Detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[9] |
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
[10] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[J/OL]. arXiv: 1804.02767, 2018, https://arxiv.org/abs/1804.02767.
|
[11] |
Bochkovskiy A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv: 2004.10934, 2020, https://arxiv.org/abs/2004.10934.
|
[12] |
LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
|
[13] |
LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
[14] |
汤踊, 韩军, 魏文力, 等. 深度学习在输电线路中部件识别与缺陷检测的研究[J]. 电子测量技术, 2018, 41(6): 60-65.
TANG Y, HAN J WEI W L, et al. Research on deep learning for component recognition and defect detection in transmission lines[J]. Electronic Measurement Technology, 2018, 41(6): 60-65.
|
[15] |
LIU Z Q, WANG H F. Automatic detection of transformer components in inspection images based on improved Faster R-CNN[J]. Energies, 2018, 11(12): 3496. DOI: 10.3390/en11123496
|
[16] |
徐凯, 梁志坚, 张镱议, 等. 基于GoogLeNet InceptionV3模型的电力设备图像识别[J]. 高压电器, 2020, 56(9): 129-135, 143.
XU K, LIANG Z J, ZHANG Y Y, et al. Power equipment image recognition based on GoogLeNet InceptionV3 model[J]. High Voltage Apparatus, 2020, 56(9): 129-135, 143.
|
[17] |
王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310.
WANG X H, LI H, FAN S S et al. Automatic detection method for abnormal infrared images of power equipment based on improved SSD[J]. Transactions of the Chinese Electrotechnical Society, 2020, 35(S1): 302-310.
|
[18] |
Howard A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv: 1704.04861, 2017, https://arxiv.org/abs/1704.04861.
|
[19] |
ZHENG Hanbo, LI Jinheng, LIU Yang, et al. Infrared target detection model for power equipment based on improved YOLOv3[J]. Transactions of the Chinese Electrotechnical Society, 2021, 36(7): 1389-1398.
|
[20] |
苏海锋, 赵岩, 武泽君, 等. 基于改进RetinaNet的电力设备红外目标精细化检测模型[J]. 红外技术, 2021, 43(11): 1104-1111. http://hwjs.nvir.cn/article/id/3233a6a1-cbf0-4110-baa5-2a56e551f092
SU H F, ZHAO Y, WU Z J, et al. Refined infrared target detection model for power equipment based on improved RetinaNet[J]. Infrared Technology, 2021, 43(11): 1104-1111. http://hwjs.nvir.cn/article/id/3233a6a1-cbf0-4110-baa5-2a56e551f092
|
[21] |
段中兴, 张雨明, 马佳豪. 基于改进YOLOv4的电力设备红外图像识别[J]. 激光与光电子学进展, 2022, 59(24): 29-36.
DUAN Z X, ZHANG Y M, MA J H. Infrared image recognition of power equipment based on improved YOLOv4 [J]. Advances in Laser and Photonics, 2022, 59(24): 29-36.
|
[22] |
YANG L, ZHANG R Y, LI L, et al. Simam: A simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning, PMLR, 2021: 11863-11874.
|
[23] |
WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv preprint arXiv: 2110.13389, 2021.
|
[24] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[25] |
WANG Q L, WU B G, ZHU P F, et al, ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11531-11539.
|
[26] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|
[1] | YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458. |
[2] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[3] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[4] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[5] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[6] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[7] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[8] | WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |