Citation: | SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Infrared Image Object Detection Method Based on DCS-YOLOv8 Model[J]. Infrared Technology , 2024, 46(5): 565-575. |
In response to the challenges posed by low signal-to-noise ratios and complex task scenarios, an improved detection method called DCS-YOLOv8 (DCN_C2f-CA-SIoU-YOLOv8) is proposed to address the insufficient infrared occluded object detection and weak target detection capabilities of the YOLOv8 model. Building on the YOLOv8 framework, the backbone network incorporates a lightweight deformable convolution network (DCN_C2f) module based on deformable convolutions, which adaptively adjusts the network's visual receptive field to enhance the multi-scale feature representation of objects. The feature fusion network introduces the coordinate attention (CA) module based on coordinate attention mechanisms to capture spatial dependencies among multiple objects, thereby improving the object localization accuracy. Additionally, the position regression loss function is enhanced using Scylla IoU to ensure a relative displacement direction match between the predicted and ground truth boxes. This improvement accelerates the model convergence speed and enhances the detection and localization accuracy. The experimental results demonstrate that DCS-YOLOv8 achieves significant improvements in the average precision of the FLIR, OTCBVS, and VEDAI test sets compared to the YOLOv8-n\s\m\l\x series models. Specifically, the average mAP@0.5 values are enhanced by 6.8%, 0.6%, and 4.0% respectively, reaching 86.5%, 99.0%, and 75.6%. Furthermore, the model's inference speed satisfies the real-time requirements for infrared object detection tasks.
[1] |
韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 438-461. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204050.htm
HAN J H, WEI Y T, PENG Z M, et al. Infrared dim and small target detection: a review[J]. Infrared and Laser Engineering, 2022, 51(4): 438-461. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204050.htm
|
[2] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
[3] |
ZHAO M, LI W, LI L, et al. Single-frame infrared small-target detection: a survey[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(2): 87-119. DOI: 10.1109/MGRS.2022.3145502
|
[4] |
Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448.
|
[5] |
Gavrilescu R, Zet C, Fosalau C, et al. Faster R-CNN: an approach to real-time object detection[C]//Proc of International Conference and Exposition on Electrical and Power Engineering, 2018: 165-168.
|
[6] |
CAI Z, Vasconcelos N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
[7] |
HE Kaiming, Gkioxari Georgia, Dollar Piotr, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. DOI: 10.1109/TPAMI.2018.2858826
|
[8] |
WEI Liu, Dragomir Anguelov, Dumitru Erhan, et al. SSD: single shot multibox detector[J]. arXiv, 2015: 1512.02325.
|
[9] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
|
[10] |
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv, 2018: 1804.02767.
|
[11] |
Krizhevsky A, Sutskever I, Hinton Ge. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386
|
[12] |
高昂, 梁兴柱, 夏晨星, 等. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX202305005.htm
GAO A, LIANG X Z, XIA C X, et al. A dense pedestrian detection algorithm with improved Yolov8[J]. Journal of Graphics, 2023, 44(5): 890-898. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX202305005.htm
|
[13] |
陈皋, 王卫华, 林丹丹. 基于无预训练卷积神经网络的红外车辆目标检测[J]. 红外技术, 2021, 43(4): 342-348. http://hwjs.nvir.cn/cn/article/id/8142853e-c38f-43ff-8915-4810e1948dc3?viewType=HTML
CHEN G, WANG W H, LIN D D. Infrared vehicle target detection based on convolutional neural network without pre-training[J]. Infrared Technology, 2021, 43(4): 342-348. http://hwjs.nvir.cn/cn/article/id/8142853e-c38f-43ff-8915-4810e1948dc3?viewType=HTML
|
[14] |
周颖, 颜毓泽, 陈海永, 等. 基于改进YOLOv8的光伏电池缺陷检测[J]. 激光与光电子学进展, 2024, 61(8): 0812008. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202408025.htm
ZHOU Y, YAN Y Z, CHEN H Y et al. Defect detection of photovoltaic cells based on improved Yolov8[J]. Laser & Optoelectronics Progress, 2024, 61(8): 0812008. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202408025.htm
|
[15] |
HOU L, LU K, XUE J, et al. Cascade detector with feature fusion for arbitrary-oriented objects in remote sensing images[C]//IEEE International Conference on Multimedia and Expo, 2020: 1-6.
|
[16] |
XU D, WU Y. FE-YOLO: A feature enhancement network for remote sensing target detection[J]. Remote Sensing, 2021, 13(7): 1311. DOI: 10.3390/rs13071311
|
[17] |
LIU W, MA L, WANG J, et al. Detection of multiclass objects in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(5): 791-795.
|
[18] |
HU J, ZHI X, SHI T, et al. PAG-YOLO: a portable attention-guided YOLO network for small ship detection[J]. Remote Sensing, 2021, 13(16): 3059. DOI: 10.3390/rs13163059
|
[19] |
CHEN L, SHI W, DENG D. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 660. DOI: 10.3390/rs13040660
|
[20] |
Gevorgyan Z. Siou Loss: More powerful learning for bounding box regression[J]. arXiv, 2022: 2205.12740.
|
[21] |
XU Z, XU X, WANG L, et al. Deformable convnet with aspect ratio constrained NMS for object detection in remote sensing imagery[J]. Remote Sensing, 2017, 9(12): 1312-1331. DOI: 10.3390/rs9121312
|
[22] |
LI C, LUO B, HONG H, et al. Object detection based on global-local saliency constraint in aerial images[J]. Remote Sensing, 2020, 12(9): 1435-1457. DOI: 10.3390/rs12091435
|
[23] |
ZHENG Z, ZHONG Y F, MA A L, et al. HyNet: hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 1-14. DOI: 10.1016/j.isprsjprs.2020.04.019
|
[24] |
王建军, 魏江, 梅少辉, 等. 面向遥感图像小目标检测的改进YOLOv3算法[J]. 计算机工程与应用, 2021, 57(20): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202120016.htm
WANG J J, WEI J, MEI S H, et al. Improved Yolov3 for small object detection in remote sensing image[J]. Computer Engineering and Applications, 2021, 57(20): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202120016.htm
|
[25] |
张瑶, 潘志松. GP-YOLOX: 无预训练的轻量级红外目标检测模型[J]. 计算机技术与发展, 2022, 32(12): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202212025.htm
ZHANG Y, PAN Z S. GP-YOLOX: Light-weight infrared object detection model without pre-training[J]. Computer Technology and Development, 2022, 32(12): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202212025.htm
|
[26] |
DAI J, QI H, XIONG Y, et al. Deformable Convolutional Networks[C]//IEEE International Conference on Computer Vision (ICCV), 2017: 764-777.
|
[27] |
DENG L, GONG Y, LU X, et al. Focus-enhanced scene text recognition with deformable convolutions[C]//Proceedings of the 5th International Conference on Computer and Communications, 2019: 1685-1689.
|
[28] |
XI W, SUN L, SUN J. Upgrade your network in-place with deformable convolution[C]//Proceedings of the 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science, 2020: 239-242.
|
[29] |
LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. DOI: 10.1109/TPAMI.2018.2858826
|
[30] |
RAZAKARIVONY S, JURIE F. Vehicle detection in aerial imagery: A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 32(1): 187-203.
|
[1] | LI Ziqian, BAN Yanwameng, LIU Yun, HE Dong, DU Rucai. Visible and Infrared Image Matching Method Based on Multi-Scale Feature Point Extraction[J]. Infrared Technology , 2025, 47(3): 351-357. |
[2] | QI Yanjie, HOU Qinhe. Infrared and Visible Image Fusion Combining Multi-scale and Convolutional Attention[J]. Infrared Technology , 2024, 46(9): 1060-1069. |
[3] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[4] | LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multi-head Attention[J]. Infrared Technology , 2024, 46(7): 765-774. |
[5] | CHONG Fating, DONG Zhangyu, YANG Xuezhi, ZENG Qingwang. SAR and Multispectral Image Fusion Based on Dual-channel Multi-scale Feature Extraction and Attention[J]. Infrared Technology , 2024, 46(1): 61-73. |
[6] | QU Haicheng, HU Qianqian, ZHANG Xuecong. Infrared and Visible Image Fusion Combining Information Perception and Multiscale Features[J]. Infrared Technology , 2023, 45(7): 685-695. |
[7] | LI Yueyi, DING Hongchang, ZHANG Lei, ZHAO Changfu, ZHANG Shibo, WANG Aijia. Pupil Diopter Detection Approach Based on Improved YOLOv3[J]. Infrared Technology , 2022, 44(7): 702-708. |
[8] | WANG Fang, LI Chuanqiang, WU Bo, YU Kun, JIN Chan, CHEN Yake, LU Yinghui. Infrared Small Target Detection Method Based on Multi-Scale Feature Fusion[J]. Infrared Technology , 2021, 43(7): 688-695. |
[9] | ZHANG Hao, LI Na, WANG Lu. Fast Multi-sensor Image Matching Algorithm Based on a Multi-scale Dense Structure Feature[J]. Infrared Technology , 2020, 42(5): 420-425. |
[10] | SUN Shixin, ZHENG Zhiyun. Genetic Algorithm for Infrared Multi-target Detection Based on Multi-scale NNLoG Feature[J]. Infrared Technology , 2019, 41(9): 837-842. |
1. |
朱敏鸣,应祥岳. 无人机视觉小目标检测的改进YOLOv8s算法研究. 企业科技与发展. 2025(02): 90-95 .
![]() | |
2. |
班国邦,付磊,蒋理,杜昊,黎安俊,何雨昱,周骏超. 基于图像筛选的两阶段复杂作业人员行为动态风险辨识. 电力大数据. 2024(08): 58-69 .
![]() |