Citation: | ZHANG Xingping, SHAO Yanhua, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu. Aerial Infrared Pedestrian Detection with Saliency Map Fusion[J]. Infrared Technology , 2024, 46(9): 1043-1050. |
Object detection is a fundamental task in computer vision. Drones equipped with infrared cameras facilitate nighttime reconnaissance and surveillance. To realize small target detection, slight texture information, weak contrast in infrared aerial photography scenes, limited accuracy of traditional algorithms, and heavy dependence on computing power and power consumption in infrared object detection, a pedestrian detection method for infrared aerial photography scenes that integrates salient images is proposed. First, we use U2-Net to generate saliency maps from the original thermal infrared images for image enhancement. Second, we analyze the impact of two fusion methods, pixel-level weighted fusion, and replacement of image channels as image-enhancement schemes. Finally, to improve the adaptability of the algorithm to the target scene, the prior boxes are reclustered. The experimental results show that pixel-level weighted fusion presents excellent results. This method improves the average accuracy of typical YOLOv3, YOLOv3-tiny, and YOLOv4-tiny algorithms by 6.5%, 7.6%, and 6.2%, respectively, demonstrating the effectiveness of the designed fused visual saliency method.
[1] |
Bochkovskiy Alexey, WANG Chienyao, LIAO Hongyuan. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. [2020-8-28]. https://arxiv.org/abs/2004.10934.
|
[2] |
顾佼佼, 李炳臻, 刘克, 等. 基于改进Faster R-CNN的红外舰船目标检测算法[J]. 红外技术, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9
GU J J, LI B Z, LIU K, et al. Infrared ship target detection algorithm based on improved faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9
|
[3] |
杨蜀秦, 刘江川, 徐可可, 等. 基于改进CenterNet的玉米雄蕊无人机遥感图像识别[J]. 农业机械学报, 2021, 52(9): 206-212.
YANG S Q, LIU J C, XU K K, et al. Remote sensing image recognition of corn stamens based on improved CenterNet for unmanned aerial vehicles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 206-212.
|
[4] |
Miezianko Roland, Pokrajac Dragoljub. People detection in low resolution infrared videos [C]//Proc of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008: 1-6.
|
[5] |
REN Shaoqing, HE Kaiming, Girshick Ross, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Trans on Pattern Analysis, 2016, 39(6): 1137-1149.
|
[6] |
Redmon Joseph, Divvala Santosh, Girshick Ross, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
[7] |
Redmon Joseph, Farhadi Ali. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
[8] |
Redmon Joseph, Farhadi Ali. Yolov3: An incremental improvement[EB/OL]. [2018-04-08], https://arxiv.org/abs/1804.02767v1.
|
[9] |
LIU Wei, Anguelov Dragomir, Erhan Dumitru, et al. SSD: Single shot multibox detector[C]// Proceedings of the European Conference on Computer Vision, 2017: 21-37.
|
[10] |
LI Chengyang, SONG Dan, TONG Ruofeng, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85: 161-171. DOI: 10.1016/j.patcog.2018.08.005
|
[11] |
仇国庆, 杨海静, 王艳涛, 等. 基于视觉特征融合的机载红外弱小目标检测[J]. 激光与光电子学进展, 2020, 57(18): 79-86.
QIU G Q, YANG H J, WANG Y T, et al. Airborne infrared dim small target detection based on visual feature fusion[J]. Laser & Optoelectronics Progress, 2020, 57(18): 79-86.
|
[12] |
李婉蓉, 徐丹, 史金龙, 等. 显著性物体检测研究综述: 方法、应用和趋势[J/OL]. 计算机应用研究, https://doi.org/10.19734/j.issn.1001-3695.2021.12.0645.
LI W R, XU D, SHI J L, et al. Review of salient object detection research: methods, applications and trends[J/OL]. Computer Application Research, https://doi.org/10.19734/j.issn.1001-3695.2021.12.0645.
|
[13] |
LIU Yixiu, ZHANG Yunzhou, Coleman Sonya, et al. A new patch selection method based on parsing and saliency detection for person re-identification[J]. Neurocomputing, 2020, 374: 86-99. DOI: 10.1016/j.neucom.2019.09.073
|
[14] |
赵兴科, 李明磊, 张弓, 等. 基于显著图融合的无人机载热红外图像目标检测方法[J]. 自动化学报, 2021, 47(9): 2120-2131.
ZHAO X K, LI M L, ZHANG G, et al. Object detection method based on saliency map fusion for UAV-borne thermal images[J]. Acta Automatica Sinice, 2021, 47(9): 2120-2131.
|
[15] |
QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. U2-Net: Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404. DOI: 10.1016/j.patcog.2020.107404
|
[16] |
刘若阳, 艾斯卡尔·艾木都拉. 基于局部协方差矩阵判别模型的红外小目标检测方法[J]. 激光与红外, 2020, 50(6): 761-768. DOI: 10.3969/j.issn.1001-5078.2020.06.019
LIU R Y, Aiskar Aimudu. Infrared small target detection method based on local covariance matrix discriminant model[J]. Laser & Infrared, 2020, 50(6): 761-768. DOI: 10.3969/j.issn.1001-5078.2020.06.019
|
[17] |
袁明, 宋延嵩, 张梓祺, 等. 基于增强局部对比度的红外弱小目标检测方法[J]. 激光与光电子学进展, https://kns.cnki.net/kcms/detail/31.1690.tn.20220524.1403.002.html.
YUAN M, SONG Y S, ZHANG Z Q, et al. Infrared small target detection method based on enhanced local contrast[J]. Laser and Optoelectronics Progress, https://kns.cnki.net/kcms/detail/31.1690.tn.20220524.1403.002.html.
|
[18] |
CHEN Yunfan, Hyunchul Shin. Pedestrian detection at night in infrared images using an attention-guided encoder-decoder convolutional neural network [J]. Applied Sciences, 2020, 10(3): 809. DOI: 10.3390/app10030809
|
[19] |
代牮, 赵旭, 李连鹏, 等. 基于改进YOLOv5的复杂背景红外弱小目标检测算法[J]. 红外技术, 2022, 44(5): 504-512. http://hwjs.nvir.cn/article/id/f71aa5f4-92b0-4570-9056-c2abd5506021
DAI J, ZHAO X, LI L P, et al. Infrared small target detection algorithm in complex background based on improved YOLOv5[J]. Infrared Technology, 2022, 44(5): 504-512. http://hwjs.nvir.cn/article/id/f71aa5f4-92b0-4570-9056-c2abd5506021
|
[20] |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239.
LUO H L, CHEN H K. A review of object detection based on deep learning[J]. Chinese Journal of Electronics, 2020, 48(6): 1230-1239.
|
[21] |
赵鹏鹏, 李庶中, 李迅, 等. 融合视觉显著性和局部熵的红外弱小目标检测[J]. 中国光学, 2022, 15(2): 267-275.
ZHAO P P, LI S Z, LI X, et al. Infrared weak and small target detection combining visual saliency and local entropy[J]. China Optics, 2022, 15(2): 267-275.
|
[22] |
LI Minglei, ZHAO Xingke, LI Jiasong, et al. ComNet: combinational neural network for object detection in UAV-Borne thermal images [J]. IEEE Trans on Geoscience and Remote Sensing, 2021, 59(8): 6662-6673. DOI: 10.1109/TGRS.2020.3029945
|
[23] |
SHAO Yanhua, ZHANG Xingping, CHU Hongyu, et al. AIR-YOLOv3: aerial infrared pedestrian detection via an improved YOLOv3 with network pruning[J]. Applied Sciences, 2022, 12(7): 3627. DOI: 10.3390/app12073627
|
[1] | YANG Dawei, YANG Mingsheng, FU Bo. Improved YOLOv7 for Multi-Target Detection of Infrared Images of Power Equipment[J]. Infrared Technology , 2025, 47(3): 326-334. |
[2] | ZHANG Fei, WANG Jian, ZHANG Yuesong. Lightweight Infrared Small Target Detection Algorithm under Oblique View Based on YOLOv5[J]. Infrared Technology , 2025, 47(2): 217-225. |
[3] | CHEN Jia, YU Chengbo, WANG Shibing, JIANG Qichao, HE Xin, ZHANG Wei. IR Image Classification and Detection of Power Equipment Based on CBAM Improvement[J]. Infrared Technology , 2025, 47(1): 72-80. |
[4] | DENG Changzheng, LIU Mingze, FU Tian, GONG Mengqing, LUO Bingjie. Infrared Image Recognition of Substation Equipment Based on Improved YOLOv7-Tiny Algorithm[J]. Infrared Technology , 2025, 47(1): 44-51. |
[5] | LI Bing, ZHAO Kuan, BAI Yunshan, GUO Congbin, XU Wei, XU Dawei, ZHAI Yongjie. Defect Detection of Photovoltaic Panel Infrared Image Based on YOLOv7-EPAN[J]. Infrared Technology , 2024, 46(11): 1315-1324. |
[6] | WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801. |
[7] | GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51. |
[8] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[9] | LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664. |
[10] | YI Shi, NIE Yan, ZHANG Yangyi, ZHAO Qianqian, ZHUANG Yitong. Nighttime Target Recognition Method Based on Infrared Thermal Imaging and YOLOv3[J]. Infrared Technology , 2019, 41(10): 970-975. |
1. |
王永生,姬嗣愚. 基于深度学习的目标检测算法综述. 计算机与数字工程. 2023(06): 1231-1237 .
![]() | |
2. |
方丽娟,张常友. 基于多特征融合的红外图像行人检测研究. 激光杂志. 2022(03): 114-117 .
![]() | |
3. |
顾佼佼,李炳臻,刘克,姜文志. 基于改进Faster R-CNN的红外舰船目标检测算法. 红外技术. 2021(02): 170-178 .
![]() | |
4. |
林浩,马可可,牛阿云,庄家俊. 基于远红外成像技术的车载夜间行人检测方法. 现代计算机. 2021(04): 64-68+97 .
![]() | |
5. |
田珊. 基于D-S证据理论的红外图像行人检测. 科技通报. 2021(07): 52-56 .
![]() | |
6. |
张国荣,刘炳君,付成丽. 基于Python和CNN的数字验证码识别. 太原师范学院学报(自然科学版). 2020(03): 62-65 .
![]() |