SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology , 2024, 46(2): 162-167.
Citation: SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology , 2024, 46(2): 162-167.

Multi-scale Anchor Construction Method for Object Detection

More Information
  • Received Date: April 06, 2022
  • Revised Date: May 10, 2022
  • Object detection is a popular research topic and fundamental task in computer vision. Anchor-based object detection has been widely used in many fields. Current anchor selection methods face two main problems: a fixed size of a priori values based on a specific dataset and a weak generalization ability in different scenarios. The unsupervised K-means algorithm for calculating anchor frames, which is significantly influenced by initial values, generates less variation in anchor points for clustering datasets with a single object size and cannot reflect the multiscale output of the network. In this study, a multiscale anchor (MSA) method that introduces multiscale optimization was developed to address these issues. This method scales and stretches the anchor points generated by clustering according to the dataset characteristics. The optimized anchor points retain the characteristics of the original dataset and reflect the advantages of the multiple scales of the model. In addition, this method was applied to the preprocessing phase of training without increasing the model inference time. Finally, the single-stage mainstream algorithm, You Only Look Once (YOLO), was selected to perform extensive experiments on different scenes of the infrared and industrial scene datasets. The results show that the MSA method can significantly improve the detection accuracy of small-sample scenes.
  • [1]
    伏轩仪, 张銮景, 梁文科, 等. 锚点机制在目标检测领域的发展综述[J]. 计算机科学与探索, 2022, 16(4): 791-805.

    FU Xuanyi, ZHANG Luanjing, LIANG Wenke, et al. Review on the development of anchor mechanism in object detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 791-805.
    [2]
    易诗, 周思尧, 沈练, 等. 基于增强型轻量级网络的车载热成像目标检测方法[J]. 红外技术, 2021, 43(3): 237-245. http://hwjs.nvir.cn/article/id/e58223a9-7347-4fab-828d-663b93eaa92f

    YI Shi, ZHOU Siyao, SHEN Lian, et al. Vehicle-based thermal imaging object detection method based on enhanced lightweight network[J]. Infrared Technology, 2021, 43(3): 237-245. http://hwjs.nvir.cn/article/id/e58223a9-7347-4fab-828d-663b93eaa92f
    [3]
    顾佼佼, 李炳臻, 刘克, 等. 基于改进Faster R-CNN的红外舰船目标检测算法[J]. 红外技术, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9

    GU Jiaojiao, LI Bingzhen, LIU Ke, et al. Infrared ship object detection algorithm based on improved faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9
    [4]
    邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.

    SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
    [5]
    ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759-9768.
    [6]
    LIN T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]//European Conference on Computer Vision, 2014: 740-755.
    [7]
    LAW H, DENG J. Cornernet: detecting objects as paired key-points[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 765-781.
    [8]
    YUAN C, YANG H. Research on K-value selection method of K-means clustering algorithm[J]. Multidisciplinary Scientific Journal, 2019, 2(2): 226-235. DOI: 10.3390/j2020016
    [9]
    LI M, ZHAO X, LI J, et al. ComNet: combinational neural network for object detection in UAV-Borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6662-6673. DOI: 10.1109/TGRS.2020.3029945
    [10]
    LUO Y, SHAO Y, CHU H, et al. CNN-based blade tip vortex region detection in flow field[C]//Eleventh International Conference on Graphics and Image Processing, 2020, 11373: 113730P.
    [11]
    ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Association for the Advance of Artificial Intelligence(AAAI 2020), 2020: 12993-13000.
    [12]
    FU C Y, LIU W, Ranga A, et al. Dssd: Deconvolutional single shot detector[J/OL]. arXiv preprint arXiv: 1701.06659, 2017.
    [13]
    LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(2): 318-327.
    [14]
    CAI Z, FAN Q, FE RIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 354-370.
    [15]
    ZHU C, TAO R, LU K, et al. Seeing small faces from robust anchor's perspective[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5127-5136.
    [16]
    KE W, ZHANG T, HUANG Z, et al. Multiple anchor learning for visual object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10206-10215.
    [17]
    Ramachandran P, Zoph B, Le Q V. Searching for activation functions[J/OL]. arXiv preprint arXiv: 1710.05941, 2017.
    [18]
    KONG T, SUN F, LIU H, et al. Foveabox: beyond anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. DOI: 10.1109/TIP.2020.3002345
    [19]
    ZOU Zhengxia, SHI Zhenwei, GUO Yuhong, et al. Object detection in 20 years: a survey[J/OL]. arXiv preprint arXiv: 1905.05055, 2019.
    [20]
    Zoph B, Cubuk E D, Ghiasi G, et al. Learning data augmentation strategies for object detection[C]//European Conference on Computer Vision, 2020: 566-583.
  • Related Articles

    [1]QI Yanjie, HOU Qinhe. Infrared and Visible Image Fusion Combining Multi-scale and Convolutional Attention[J]. Infrared Technology , 2024, 46(9): 1060-1069.
    [2]LIU Fukuan, LUO Suyun, HE Jia, ZHA Chaoneng. FVIT-YOLO v8: Improved YOLO v8 Small Object Detection Based on Multi-scale Fusion Attention Mechanism[J]. Infrared Technology , 2024, 46(8): 912-922.
    [3]LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multi-head Attention[J]. Infrared Technology , 2024, 46(7): 765-774.
    [4]SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Infrared Image Object Detection Method Based on DCS-YOLOv8 Model[J]. Infrared Technology , 2024, 46(5): 565-575.
    [5]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [6]ZHENG Lu, PENG Yueping, ZHOU Tongtong. A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets[J]. Infrared Technology , 2023, 45(5): 474-481.
    [7]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [8]HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology , 2023, 45(2): 143-149.
    [9]WANG Fang, LI Chuanqiang, WU Bo, YU Kun, JIN Chan, CHEN Yake, LU Yinghui. Infrared Small Target Detection Method Based on Multi-Scale Feature Fusion[J]. Infrared Technology , 2021, 43(7): 688-695.
    [10]The Method of Space-shield filtering Based Multi-Scaling Wavelet Analysis And Application in Star-image Denoising[J]. Infrared Technology , 2004, 26(5): 25-27,32. DOI: 10.3969/j.issn.1001-8891.2004.05.007
  • Cited by

    Periodical cited type(1)

    1. 杨悟琦,艾旭升. 课堂场景密集人头检测技术. 福建电脑. 2024(06): 46-53 .

    Other cited types(6)

Catalog

    Article views (150) PDF downloads (42) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return