ZHENG Lu, PENG Yueping, ZHOU Tongtong. A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets[J]. Infrared Technology , 2023, 45(5): 474-481.
Citation: ZHENG Lu, PENG Yueping, ZHOU Tongtong. A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets[J]. Infrared Technology , 2023, 45(5): 474-481.

A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets

More Information
  • Received Date: June 04, 2022
  • Revised Date: June 22, 2022
  • To solve the problems of large parameters, high complexity, and poor detection performance of multiscale targets in the existing infrared target detection algorithms based on deep learning, a lightweight infrared target detection algorithm for multiscale targets is proposed. Based on YOLOv3, the algorithm uses the MobileNet V2 backbone network, simplified spatial pyramid structure (simSPP), anchor-free mechanism, decoupling head, and simplified positive and negative sample allocation strategies (SimOTA) to optimize the backbone, neck, and head, respectively. Finally, LMD-YOLOv3 with the model size of 6.25 M and floating-point computation of 2.14 GFLOPs was obtained. Based on the MTS-UAV data set, the mAP reached 90.5%, and on the RTX2080Ti dataset, the FPS reached 99. Compared with YOLOv3, mAP increased by 11.7%, and the model size was only 1/10 of YOLOv3.
  • [1]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
    [2]
    Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
    [3]
    Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in neural Information Processing Systems, 2015, 28: 91-99.
    [4]
    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European conference on computer vision., 2016: 21-37.
    [5]
    Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv, 2020, https://arxiv.org/abs/2004.10934
    [6]
    WANG C Y, Yeh I H, LIAO H Y M. You Only Learn One Representation: Unified Network for Multiple Tasks[J/OL]. arXiv pre-print arXiv, 2021, https://arxiv.org/abs/2105.04206.
    [7]
    GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J/OL]. arXiv preprint arXiv, 2021, https://arxiv.org/abs/2107.08430.
    [8]
    LIU M, DU H, ZHAO Y, et al. Image small target detection based on deep learning with SNR controlled sample generation[M]//Current Trends in Computer Science and Mechanical Automation, 2018: 211-220.
    [9]
    LIN Liangkui, WANG Shaoyou, TANG Zhongxing. Using deep learning to detect small targets in infrared oversampling images[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. DOI: 10.21629/JSEE.2018.05.07
    [10]
    ZHAO D, ZHOU H, RANG S, et al. An adaptation of CNN for small target detection in the infrared[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: 669-672.
    [11]
    谢江荣. 基于深度学习的空中红外目标检测关键技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2019.

    XIE Jiangrong. Research on Key Technologies of Air Infrared Target Detection Based on Deep Learning[D] Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2019.
    [12]
    FAN M, TIAN S, LIU K, et al. Infrared small target detection based on region proposal and CNN classifier[J]. Signal, Image and Video Processing, 2021, 15: 1927-1936. DOI: 10.1007/s11760-021-01936-z
    [13]
    张凯, 刘昊, 杨曦, 等. 基于关键点检测网络的空中红外目标要害部位识别算法[J]. 西北工业大学学报, 2020, 38(6): 1154-1162. DOI: 10.3969/j.issn.1000-2758.2020.06.003

    ZHANG K, LIU H, YANG X, et al. Key position recognition algorithm of aerial infrared target based on key point detection net-work [J]. Journal of Northwest University of Technology, 2020, 38(6): 1154-1162 DOI: 10.3969/j.issn.1000-2758.2020.06.003
    [14]
    Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv, 2018, https://arxiv.org/abs/1804.02767.
    [15]
    Howard A, Zhmoginov A, CHEN L C, et al. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation[J/OL]. Computer Science, 2018, https://arxiv.org/abs/1801.04381v2.
    [16]
    Howard A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv preprint arXiv, 2017, https://arxiv.org/abs/1704.04861.
    [17]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
  • Related Articles

    [1]FENG Hongwei, LIU Yuanyuan, WEN Ziteng, TAN Yong. Recognition Algorithm for an Infrared Flame Detector Based on an Improved Takagi-Sugeno Fuzzy Radial Basis Function Neural Network[J]. Infrared Technology , 2021, 43(1): 37-43.
    [2]HAO Zhenghui, ZHANG Xuesong, WANG Gao, DENG Fangfang, WEI Xuan, YUAN Dongfang. Auto Focusing Evaluation Function Based on Edge Contour Extraction[J]. Infrared Technology , 2018, 40(2): 170-175.
    [3]PAN Xuejuan, ZHU Youpan, PAN Chao, XIA Likun, ZENG Bangze, LUO Lin, ZHAO Deli, LI Zemin. The Influence of Energy Fluctuation of Image on Auto Focus Sharpness Evaluation Function[J]. Infrared Technology , 2016, 38(12): 1032-1037.
    [4]ZHAO Xiaoli, ZHOU Pucheng, XUE Mogen. A Kind of Infrared Image Segment Method Using Improved Chan-Vese Model[J]. Infrared Technology , 2016, 38(9): 774-778.
    [5]GUO Jingbin, FENG Huajie, WANG Long, PENG Qinjian, LI Xingfei. Design of Focusing Window Based on Energy Function of Gradient[J]. Infrared Technology , 2016, 38(3): 197-202.
    [6]YU Hao, LIU Bing-qi, YING Jia-ju, HU Wen-gang. One-Dimension Image Edge Detection Method Based on Sigmoidal Function Fitting[J]. Infrared Technology , 2014, (10): 816-819.
    [7]LIU En-fan, YANG Jiu-cheng, SHI Wen-jun, XU Guo-qiang. An Infrared Image Segmentation Approach based on Improved Chan-Vese Model[J]. Infrared Technology , 2011, 33(9): 545-551. DOI: 10.3969/j.issn.1001-8891.2011.09.013
    [8]WEI Tong-lei, ZENG Qing-ping, ZHOU Yan, BAI Bin. A Method for Radial Moving Small Targets Detecting[J]. Infrared Technology , 2007, 29(12): 712-715. DOI: 10.3969/j.issn.1001-8891.2007.12.008
    [9]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
    [10]YU Rui-xing, LI Yan-jun, ZHANG Ke. Infrared Image Edge Detection Using Improved Bubble Function[J]. Infrared Technology , 2006, 28(1): 36-38. DOI: 10.3969/j.issn.1001-8891.2006.01.009
  • Cited by

    Periodical cited type(1)

    1. 肖沁,李正周,刘海毅. 基于场景自适应方向引导滤波的红外成像非均匀性校正方法. 光子学报. 2024(11): 253-265 .

    Other cited types(2)

Catalog

    Article views (172) PDF downloads (44) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return