CHEN Chuxia, DING Yong. Infrared Ship Detection Based on Multi-scale Semantic Network[J]. Infrared Technology , 2022, 44(5): 529-536.
Citation: CHEN Chuxia, DING Yong. Infrared Ship Detection Based on Multi-scale Semantic Network[J]. Infrared Technology , 2022, 44(5): 529-536.

Infrared Ship Detection Based on Multi-scale Semantic Network

More Information
  • Received Date: May 04, 2021
  • Revised Date: November 28, 2021
  • To enhance the anti-jamming performance of ship detection, an effective and stable single-stage ship detection network is proposed in this study. The network is composed of three modules: feature optimization, feature pyramid fusion, and context enhancement modules. The feature optimization module extracts multi-scale context information and further refines the high-level feature input characteristics, to enhance the performance of dim–small object detection. The feature pyramid fusion module can generate semantic information with stronger representation ability. The context enhancement module integrates local and global features to enhance the network feature expression ability, reduce the impact of a complex background on detectability, adjust the imbalance between the foreground and background, and eliminate the impact of scale-wave. To verify the effectiveness and robustness of the proposed method, qualitative and quantitative verifications are performed on a self-built dataset. Experimental results show that the proposed network achieves optimal performance compared with the latest benchmark comparison model and considerably improves the detection accuracy without increasing complexity.
  • [1]
    邢莎, 吉林, 雍杨, 等. 复杂场景下的自动红外舰船目标检测[J]. 红外技术, 2014, 36(4): 320-325. http://hwjs.nvir.cn/article/id/hwjs201404013

    XING Sha, JI Lin, YONG Yang, et al. Automatic infrared warship target detection under complicated background[J]. Infrared Technology, 2014, 36(4): 320-325. http://hwjs.nvir.cn/article/id/hwjs201404013
    [2]
    赵文涛, 曹昕鸷, 田志勇. 基于自适应阈值区域生长的红外舰船目标分割方法[J]. 红外技术, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010

    ZHAO Wentao, CAO Xinzhi, TIAN Zhiyong. An infrared ship target segmentation method based on adaptive threshold region growth[J]. Infrared Technology, 2018, 40(2): 158-163. http://hwjs.nvir.cn/article/id/hwjs201802010
    [3]
    丁荣莉, 韩传钊, 谢宝蓉, 等. 红外遥感图像舰船目标检测[J]. 红外技术, 2019, 41(2): 127-133. http://hwjs.nvir.cn/article/id/hwjs201902004

    DING Rongli, HAN Chuanzhao, XIE Baorong, et al. Ship target detection in infrared remote-sensing image[J]. Infrared Technology, 2019, 41(2): 127-133. http://hwjs.nvir.cn/article/id/hwjs201902004
    [4]
    Kumar D, ZHANG X. Ship detection based on faster R-CNN in SAR imagery by anchor box optimization[C]//2019 International Conference on Control, Automation and Information Sciences (ICCAIS), 2019: 309-313.
    [5]
    Redmon J, Farhadi A. YOLOv3: an incremental improvement[J]. arXiv: 1804.02767, 2018.
    [6]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [7]
    LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//International Conference on Computer Vision, 2017: 2999-3007.
    [8]
    LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]// European Conference on Computer Vision, 2018: 765-781.
    [9]
    DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[J/OL]. arXiv: 1904.08189, 2019.
    [10]
    TAN M, PANG R, LE Q V, et al. EfficientDet: scalable and efficient object detection[J/OL]. arXiv: 1911.09070, 2019.
    [11]
    杨涛, 戴军, 吴钟建, 等. 基于深度学习的红外舰船目标识别[J]. 红外技术, 2020, 42(5): 426-433. http://hwjs.nvir.cn/article/id/hwjs202005003

    YANG Tao, DAI Jun, WU Zhongjian, et al. Target recognition of infrared ship based on deep learning[J]. Infrared Technology, 2020, 42(5): 426-433. http://hwjs.nvir.cn/article/id/hwjs202005003
    [12]
    黄洁, 姜志国, 张浩鹏, 等. 基于卷积神经网络的遥感图像舰船目标检测[J]. 北京航空航天大学学报, 2017(9): 132-139. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201709016.htm

    HUANG Jie, JIANG Zhiguo, ZHANG Haopeng, et al. Ship target detection in remote sensing image based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017(9): 132-139. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201709016.htm
    [13]
    顾佼佼, 李炳臻, 刘克, 等. 基于改进Faster R-CNN的红外舰船目标检测算法[J]. 红外技术, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9

    GU Jiaojiao, LI Bingzhen, LIU Ke, et al. Infrared ship target detection algorithm based on improved faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170-178. http://hwjs.nvir.cn/article/id/6dc47229-7cdb-4d62-ae05-6b6909db45b9
    [14]
    GUO Haoyuan, YANG Xi, WANG Nannan, et al. A CenterNet++ model for ship detection in SAR images[J]. Pattern Recognition, 2021, 112(88): 25-34.
    [15]
    FAN S, ZHU F, CHEN S, et al. FII-CenterNet: an anchor-free detector with foreground attention for traffic object detection[J]. IEEE Transactions on Vehicular Technology, 2021, 120(99): 1-14.
    [16]
    Barrios J M, Bustos B. Competitive content-based video copy detection using global descriptors[J]. Multimedia Tools and Applications, 2013, 62(1): 75-110.
    [17]
    ZHANG Xiang, YANG Wei, TANG Xiaolin, et al. A fast learning method for accurate and robust lane detection using two-stage feature extraction with YOLOv3[J]. Sensors, 2018, 18(12): 4308-4315.
    [18]
    LIN G, Milan A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1289-1301.
    [19]
    TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2020: 1099e3233.
    [20]
    LIU Z, ZHANG X, JIANG T, et al. Infrared salient object detection based on global guided lightweight non-local deep features[J]. Infrared Physics & Technology, 2021, 12(3): 2309-2315.
  • Related Articles

    [1]LYU Pengyuan, LAN Jinjiang, ZENG Xueren, NIU Pei, FANG Liang, ZHAO Songpu. Infrared Object Detection Algorithm Based on Feature Enhancement and Fusion[J]. Infrared Technology , 2024, 46(7): 782-790.
    [2]SHENG Dajun, ZHANG Qiang. Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network[J]. Infrared Technology , 2021, 43(8): 784-791.
    [3]XIA Aiming, WU Xuedong. Real-time Object Tracking Based on Context Awareness and Scale Adaptation[J]. Infrared Technology , 2021, 43(5): 429-436.
    [4]ZHANG Pengcheng, HE Mingxia, CHEN Shuo, ZHANG Hongzhen, ZHANG Xinxin. Terahertz Image Enhancement Based on Generative Adversarial Network[J]. Infrared Technology , 2021, 43(4): 391-396.
    [5]ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257.
    [6]CHEN Wanmin, SHANG Zhenhong, LIU Hui. Model Complementary Target Tracking Method Using Spatio-temporal Context Information[J]. Infrared Technology , 2019, 41(9): 866-873.
    [7]MIN Zhaoyang, ZHAO Wenjie. A Target Tracking Algorithm Combining Convolution Neural Network with Spatio Temporal Context[J]. Infrared Technology , 2017, 39(8): 740-745.
    [8]LI Zeren, JI Feng, CHANG Xia, WU Yangyu. Multi-scale Object Tracking Based on Spatio-temporal Context[J]. Infrared Technology , 2017, 39(6): 535-540.
    [9]SUN Guo-dong, JI Shu-peng, ZHOU Zhen. Dim Small IR Sea Target Detection Based on Wavelet and Context Model[J]. Infrared Technology , 2010, 32(2): 97-100. DOI: 10.3969/j.issn.1001-8891.2010.02.009
    [10]JI Shu-peng, DING Xiao-qing. Morphological Filters and Wavelet-based Histogram Equalization Image Enhancement for Weak Target Detection[J]. Infrared Technology , 2003, 25(4): 32-38. DOI: 10.3969/j.issn.1001-8891.2003.04.008
  • Cited by

    Periodical cited type(1)

    1. 张雯靖. 舰船红外目标图像视觉传达增强. 舰船科学技术. 2023(21): 201-204 .

    Other cited types(2)

Catalog

    Article views (209) PDF downloads (44) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return