CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903.
Citation: CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903.

Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction

More Information
  • Received Date: June 13, 2022
  • Revised Date: August 29, 2022
  • The HgCdTe multilayer heterojunction technology is an important direction for the development of mainstream infrared detectors in the future, playing an important role in high-performance infrared detectors, such as high operating temperature (HOT) detectors, dual/multicolor detectors, and avalanche photodiodes (APDs). Recently, HgCdTe HOT infrared detectors based on multilayer heterojunction technology have been developed, particularly devices based on the barrier and non-equilibrium operating P+-π(ν)-N+ structure have been widely studied. In this review, the dark current suppression mechanisms of P+-π(ν)-N+ structure HgCdTe infrared detectors with barrier and non-equilibrium operations were systematically introduced, the key problems that restrict the development of these two types of devices were analyzed, and the relevant research progress was reviewed. We summarized and assessed the prospects of the development of multilayer heterojunction HgCdTe infrared detectors.
  • [1]
    宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd

    SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
    [2]
    覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm
    [3]
    覃钢, 夏菲, 周笑峰, 等. 基于nBn势垒阻挡结构的碲镉汞高温器件[J]. 红外技术, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005

    QIN Gang, XIA Fei, ZHOU Xiaofeng, et al. HgCdTe HOT infrared devices based on nBn barrier impeded structure[J]. Infrared Technology, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005
    [4]
    Akhavan N D, Jolley G, Umana-Membreno G A, et al. Performance modeling of bandgap engineered HgCdTe-based nBn infrared detectors[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3691-3698. DOI: 10.1109/TED.2014.2359212
    [5]
    Klipstein P. "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, 2008, 6940: 69402U.
    [6]
    Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation[J]. Optical Engineering, 2015, 54(10): 105105. DOI: 10.1117/1.OE.54.10.105105
    [7]
    Klipstein P, Klin O, Grossman S, et al. XBn barrier detectors for high operating temperatures[C]// Proc. of SPIE, 2010, 7608: 76081V.
    [8]
    Martyniuk P, Rogalski A. Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 211-220. DOI: 10.2478/bpasts-2013-0020
    [9]
    YE Z H, CHEN Y Y, ZHANG P, et al. Modeling of LWIR nBn HgCdTe photodetector[C]// Proc. of SPIE, 2014, 9070: 90701L.
    [10]
    刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版, 北京: 电子工业出版社, 2008.

    LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. 7th Edition, Beijing: Publishing House of Electronics Industry, 2009.
    [11]
    王忆锋, 唐利斌. 碲镉汞近年来的研究进展[J]. 红外技术, 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001

    WANG Yifeng, TANG Libin. Developments of mercury cadmium telluride in recent years[J]. Infrared Technology, 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001
    [12]
    丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    DING Ruijun, YANG Jianrong, HE Li, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm
    [13]
    Rogalski A, Kopytko M, Martyniuk P, et al. Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2020, 68(4): 845-855.
    [14]
    杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012.
    [15]
    Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]// Proc. of SPIE, 2014, 9070: 90701D.
    [16]
    周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
    [17]
    Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21(2): 1955.
    [18]
    Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. DOI: 10.1063/1.2360235
    [19]
    Klipstein P, Aronov D, Berkowicz E, et al. Reducing the cooling requirements of mid-wave IR detector arrays[J]. SPIE Newsroom, 2011, Doi: 10.1117/2.1201111.003919.
    [20]
    LEI L, LI L, YEH, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102. DOI: 10.1063/1.4967915
    [21]
    Rabiee Golgir H, Ghandiparsi S, Devine E P, et al. Ultra-thin super absorbing photon trapping materials for high-performance infrared detection[C]// Proc. of SPIE, 2019, 11002: 110020T.
    [22]
    Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]// Proc. of SPIE, 1985, 572: 123.
    [23]
    Kopytko M, Kębłowski A, Gawron W, et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD[J]. Opto-Electronics Review, 2013, 21(4): 151109.
    [24]
    White A. Infrared Detectors [P]. U. S. : Patent 4, 679, 063, [1983-09-22].
    [25]
    Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same [P]. U. S. : Patent 7, 795, 640 B2, [2004-06-28].
    [26]
    Kopytko M, Rogalski A. HgCdTe barrier infrared detectors[J]. Progress in Quantum Electronics, 2016, 47(12): 1-18.
    [27]
    Martyniuk P, Kopytko M, Rogalski A. Barrier infrared detectors[J]. Opto-Electronics Review, 2014, 22(2): 1624.
    [28]
    Rogalski A, Martyniuk P. Mid-wavelength Infrared nBn for HOT Detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969.
    [29]
    Pedrazzani J R, Maimon S, Wicks G W. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors[J]. Applied Physics Letters, 2008, 44(25): 1487.
    [30]
    Savich G R, Pedrazzani J R, Sidor D E, et al. Benefits and limitations of unipolar barriers in infrared photodetectors[J]. Infrared Physics & Technology, 2013, 59: 152-155.
    [31]
    Sidor D E, Savich G R, Wicks G W. Surface leakage mechanisms in III-V infrared barrier detectors[J]. Journal of Electronic Materials, 2016, 45(9): 4663-4667.
    [32]
    Rogalski A. Next decade in infrared detectors[C]// Proc. of SPIE, 2017, 10433: 104330L.
    [33]
    Savich G R, Pedrazzani J R, Maimon S, et al. Use of epitaxial unipolar barriers to block surface leakage currents in photodetectors[J]. Physica Status Solidi C, 2010, 7(10): 2540-2543.
    [34]
    Kopytko M, Gomółka E, Michalczewski K, et al. Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors[J]. Semiconductor Science and Technology, 2018, 33(12): 125010.
    [35]
    DU X, Savich G R, Marozas B T, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design[J]. Journal of Electronic Materials, 2018, 47(2): 1038-1044.
    [36]
    Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014, 1(4): 41102.
    [37]
    Kopytko M, Jóźwikowski K. Numerical analysis of current–voltage characteristics of LWIR nBn and p-on-n HgCdTe photodetectors[J]. Journal of Electronic Materials, 2013, 42(11): 3211-3216.
    [38]
    田震, 肖昕, 宋淑芳, 等. 低暗电流高温工作碲镉汞红外探测器制备技术[J]. 激光与红外, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm

    TIAN Zhen, XIAO Xin, SONG Shufang, et al. Low-dark current HOT infrared focal plane arrays using MCT technology[J]. Laser & Infrared, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm
    [39]
    Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 100(16): 161102.
    [40]
    Itsuno A M, Phillips J D, Velicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629.
    [41]
    Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBνN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2892.
    [42]
    Itsuno A M, Phillips J D, Gilmore A S, et al. Calculated performance of an auger-suppressed unipolar HgCdTe photodetector for high temperature operation[C]// Proc. of SPIE, 2011, 8155: 81550J.
    [43]
    Ting D Z-Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 23508.
    [44]
    Martyniuk P, Rogalski A. Modelling of MWIR HgCdTe complementary barrier HOT detector[J]. Solid-State Electronics, 2013, 80: 96-104.
    [45]
    Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319.
    [46]
    Kopytko M, Jozwikowski K. Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation[J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2278-2284.
    [47]
    Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier structures for HOT conditions[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3803-3807.
    [48]
    Kopytko M. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n-and p-type barriers[J]. Infrared Physics & Technology, 2014, 64(15): 47-55.
    [49]
    Klem J F, Kim J K, Cich M J, et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors[C]// Proc. of SPIE, 2010, 7608: 76081P.
    [50]
    Kopytko M, Kębłowski A, Gawron W, et al. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors[J]. Opto-Electronics Review, 2015, 23(2): 143-148.
    [51]
    Kopytko M, Kębłowski A, Gawron W, et al. MOCVD grown HgCdTe p+BnN+ barrier detector for MWIR HOT operation[C]// Proc. of SPIE, 2015, 9451: 945117.
    [52]
    Gawron W, Sobieski J, Manyk T, et al. MOCVD grown HgCdTe heterostructures for medium wave infrared detectors[J]. Coatings, 2021, 11(5): 611.
    [53]
    Uzgur F, Kocaman S. Barrier engineering for HgCdTe unipolar detectors on alternative substrates[J]. Infrared Physics & Technology, 2019, 97(3): 123-128.
    [54]
    Kopytko M, Jóźwikowski K, Rogalski A. Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode[J]. Solid-State Electronics, 2014, 100(1): 20-26.
    [55]
    Kopytko M, Wróbel J, Jóźwikowski K, et al. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166.
    [56]
    Akhavan N D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 105(12): 121110.
    [57]
    Akhavan N D, Umana-Membreno G A, Gu R, et al. Delta doping in HgCdTe-Based unipolar barrier photodetectors[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4340-4345.
    [58]
    QIU W C, JIANG T, CHENG X A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector[J]. Journal of Applied Physics, 2015, 118(12): 124504.
    [59]
    Kopytko M, Kębłowski A, Gawron W, et al. LWIR HgCdTe barrier photodiode with auger-suppression[J]. Semiconductor Science and Technology, 2016, 31(3): 35025.
    [60]
    HE J, WANG P, LI Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007.
    [61]
    安东尼⋅罗格尔斯基. 红外探测器[M]. 2版, 北京: 机械工业出版社, 2014.

    Rogalski Antoni. Infrared Detectors [M]. Second Edition, Beijing: China Machine Press, 2014.
    [62]
    Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501.
    [63]
    Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595.
    [64]
    Capper P, Garland J. Mercury Cadmium Telluride: Growth, Properties, and Applications[M]. Oxford: Wiley-Blackwell, 2011: 474-476.
    [65]
    Piotrowski A, Kłos K, Gawron W, et al. Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time[C]// Proc. of SPIE, 2007, 6542: 65421B.
    [66]
    Madejczyk P, Gawron W, Kębłowski A, et al. Response time study in unbiased long wavelength HgCdTe detectors[J]. Optical Engineering, 2017, 56(8): 087103.1-087103.8.
    [67]
    Pawluczyk J, Piotrowski J, Pusz W, et al. Complex behavior of time response of HgCdTe HOT photodetectors[J]. Journal of Electronic Materials, 2015, 44(9): 3163-3173.
    [68]
    Grodecki K, Martyniuk P, Kopytko M, et al. Fast response hot (1 1 1) HGCDTE MWIR Detectors[J]. Metrology and Measurement Systems, 2017, 24(3): 509-514.
    [69]
    Piotrowski A, Madejczyk P, Gawron W, et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007, 49(3): 173-182.
    [70]
    Kopytko M, Kębłowski A, Madejczyk P, et al. Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode[J]. Journal of Electronic Materials, 2017, 46(10): 6045-6055.
    [71]
    Madejczyk P, Gawron W, Martyniuk P, et al. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes[J]. Infrared Physics & Technology, 2017, 81(10): 276-281.
    [72]
    Kopytko M, Jóźwikowski K, Madejczyk P, et al. Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode[J]. Infrared Physics & Technology, 2013, 61: 162-166.
    [73]
    Piotrowski J F, Rogalski A. High-Operating-Temperature Infrared Photodetectors[M]. Bellingham, Washington: SPIE Press, 2007.
    [74]
    Kopytko M, Martyniuk P, Madejczyk P, et al. High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode[J]. Optical and Quantum Electronics, 2018, 50(2): 451. DOI: 10.1007/s11082-018-1336-0
    [75]
    Madejczyk P, Gawron W, Kębłowski A, et al. Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures[J]. Journal of Electronic Materials, 2020, 49(11): 6908-6917. https://www.sciencedirect.com/science/article/pii/S0079672716000112
    [76]
    Martyniuk P, Gawron W, Stępień D, et al. Status of long-wave Auger suppressed HgCdTe detectors operating>200 K[J]. Opto-Electronics Review, 2015, 23(4): 151109. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-b54920e1-6686-4d03-a0e5-b252bcf63fc2
    [77]
    Martyniuk P, Kopytko M, Keblowski A, et al. Interface influence on the long-wave Auger suppressed multilayer N+π P+p+n+ HgCdTe HOT detector performance[J]. IEEE Sensors Journal, 2017, 17(3): 674-678.
    [78]
    Madejczyk P, Gawron W, Martyniuk P, et al. MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors[J]. Semiconductor Science and Technology, 2013, 28(10): 105017. DOI: 10.2478/s11772-014-0186-y
    [79]
    Madejczyk P, Gawron W, Kębłowski A, et al. Response time improvement of LWIR HOT MCT detectors[C]// Proc. of SPIE, 2017, 10177: 1017719.
    [80]
    Martyniuk P, Kopytko M, Madejczyk P, et al. Theoretical simulation of a room temperature HgCdTe long-wave detector for fast response−operating under zero bias conditions[J]. Metrology and Measurement Systems, 2017, 24(4): 729-738.
    [81]
    Kopytko M, Sobieski J, Gawron W, et al. Minority carrier lifetime in HgCdTe (1 0 0) epilayers and their potential application to background radiation limited MWIR photodiodes[J]. Semiconductor Science and Technology, 2021, 36(5): 55003.
    [82]
    Hipwood L G, Jones C L, Walker D, et al. Affordable high-performance LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2007, 6542: 65420I.
    [83]
    Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2006, 6206: 620610.
    [84]
    Hipwood L G, Gordon N T, Jones C L, et al. 4 μm cut-off MOVPE Hg1-x CdxTe hybrid arrays with near BLIP performance at 180 K[C]// Proc. of SPIE, 2003, 5074: 185.
    [85]
    Knowles P, Hipwood L, Pillans L, et al. MCT FPAs at high operating temperatures[C]//Proc. of SPIE, 2011, 8185: 818505.
    [86]
    Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. DOI: 10.1007/s11664-006-0233-7
    [87]
    Bowen G J, Blenkinsop I D, Catchpole R, et al. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors[C]// Proc. of SPIE, 2005, 5783: 392.
    [88]
    Hipwood L G, Jones C L, Price J, et al. LW Hawk: a 16 μm pitch full-TV LW IRFPA made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2009, 7298: 729820.
    [89]
    Abbott P, Thorne P M, Arthurs C P. Latest detector developments with HgCdTe grown by MOVPE on GaAs substrates[C]// Proc. of SPIE, 2011, 8012: 801236.
    [90]
    Knowles P, Hipwood L, Shorrocks N, et al. Mercury cadmium telluride detectors achieve high operating temperatures[J]. SPIE Newsroom, 2012. Doi: 10.1117/2.1201211.004535.
    [91]
    McEwen R K, Jeckells D, Bains S, et al. Developments in reduced pixel geometries with MOVPE grown MCT arrays[C]// Proc. of SPIE, 2015, 9451: 94512D.
    [92]
    Jeckells D, McEwen R K, Bains S, et al. Further developments of 8 μm pitch MCT pixels at Finmeccanica (formerly Selex ES)[C]// Proc. of SPIE, 2016, 9819: 98191X.
    [93]
    Kinch M A, Wan C-F, Schaake H, et al. Universal 1/f noise model for reverse biased diodes[J]. Applied Physics Letters, 2009, 94(19): 193508.
    [94]
    Lee D L, Dreiske P, Ellsworth J, et al. Law 19: the ultimate photodiode performance metric[C]// Proc. of SPIE, 2020, 11407: 114070X.
    [95]
    孔金丞, 李艳辉, 杨春章, 等. 昆明物理研究所分子束外延碲镉汞薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm

    KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm
    [96]
    Knowles P, Hipwood L, Shorrocks N, et al. Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates[C]// Proc. of SPIE, 2012, 8541: 854108.
    [97]
    Jerram P, Beletic J. Teledyne's high performance infrared detectors for Space missions[C]// Proc. of SPIE, 2018, 11180: 111803D-2.
  • Related Articles

    [1]YU Jianyun, KONG Jincheng, QIN Gang, YANG Jin, SONG Linwei, CONG Shuren, LI Yanhui. High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices[J]. Infrared Technology , 2023, 45(1): 15-22.
    [2]CHEN Shuzhen, QI Jiaojiao, WANG Dan, CHENG Jie, GAO Hua, HE Bin. Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices[J]. Infrared Technology , 2022, 44(10): 1033-1040.
    [3]ZHANG Zhou, WANG Liangheng, YANG Yu, LI Yuntao, DING Yanyan, LEI Huawei, LIU Bin, ZHOU Wenhong. Research on Mid-/Long-wavelength Dual Band Infrared Focal Plane Array Photodetector Based on Type-Ⅱ Superlattice[J]. Infrared Technology , 2018, 40(9): 863-867.
    [4]WANG Yi-feng, HOU Hui, FENG Xue-yan. Development of Microscan Techniques in Infrared Focal Plane Array[J]. Infrared Technology , 2013, (12): 751-758.
    [5]XIN Yong-ming, JIANG Ya-dong, LUO Shan-yan, LIU Zi-ji. A Design of Acquisition Circuit of 640×480 Infrared Focal Plane Devices[J]. Infrared Technology , 2012, 34(1): 4-9. DOI: 10.3969/j.issn.1001-8891.2012.01.002
    [6]GENG Dong-feng, WANG Hai-zhen, LI Ming-hua, ZHENG Ke-lin. Study on Post-treatment Technology for the Surface of InSb Focal Plane Device[J]. Infrared Technology , 2011, 33(2): 96-99. DOI: 10.3969/j.issn.1001-8891.2011.02.007
    [7]ZHU Hong-bin, LI Wei, LIU Ziji, JIANG Ya-dong, JIN Zhong. Design on a Low-noise Acquisition Circuit of Infrared Focal Plane Device[J]. Infrared Technology , 2010, 32(3): 165-168,172. DOI: 10.3969/j.issn.1001-8891.2010.03.011
    [8]ZHU Jian-mei, JIN Tao, LIU Pu-ling, TANG Hong-lan, CHEN Bo-liang. Primary Investigation of γ-Irradiation Damage to InSb Infrared Focal Plane Arrays[J]. Infrared Technology , 2006, 28(2): 98-100. DOI: 10.3969/j.issn.1001-8891.2006.02.010
    [9]The Status Quo,Developments and Military Application Analysis of the Multi-color IR Focal Plane Arrays[J]. Infrared Technology , 2004, 26(3): 1-4,10. DOI: 10.3969/j.issn.1001-8891.2004.03.001
    [10]Fabrication of Quantum Well Infrared Photodector Focal Plane Array Coupled with 2-D Diffraction Grating[J]. Infrared Technology , 2002, 24(6): 77-80,85. DOI: 10.3969/j.issn.1001-8891.2002.06.018
  • Cited by

    Periodical cited type(16)

    1. 刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
    2. 郭语. 电力设备故障智能识别技术研究. 机电产品开发与创新. 2024(03): 153-155+168 .
    3. 杨嘉妮,杨利波,何婕,刘昊. 基于北斗星基增强技术的无人机电网全域覆盖巡检方法. 微型电脑应用. 2023(01): 114-117 .
    4. 黄志鸿,肖剑,徐先勇,张辉. 基于谱残差变换的电力设备热缺陷识别技术. 红外技术. 2023(08): 884-889 . 本站查看
    5. 黄志鸿,洪峰,黄伟. 形状自适应低秩表示的电力设备热故障诊断方法研究. 红外技术. 2022(08): 870-874 . 本站查看
    6. 柏帆,葛志峰,郭鹏程,裘森强,吴军法. 一种电力巡检终端设备的低功耗数据传输策略设计. 电子设计工程. 2022(24): 139-143 .
    7. 梁剑,黄志鸿,张可人. 基于多尺度引导滤波和决策融合的电力设备热故障诊断方法研究. 红外技术. 2022(12): 1344-1350 . 本站查看
    8. 芦佳硕,王光华,曹磊,张彪. 基于VR技术的电力系统异常情况巡检系统设计. 计算技术与自动化. 2021(01): 169-173 .
    9. 杨孝华,杨霁,胡兵,李曦伟,蒯雷,万俊. 基于激光投射和图像识别的电力设备智能监测方法. 激光杂志. 2021(07): 95-99 .
    10. 黄志鸿,吴晟,肖剑,张可人,黄伟. 基于引导滤波的电力设备热故障诊断方法研究. 红外技术. 2021(09): 910-915 . 本站查看
    11. 王磊. 基于报文识别的变电站安全多方式深度监测技术. 电子设计工程. 2021(20): 15-18+23 .
    12. 蒲天骄,乔骥,韩笑,张国宾,王新迎. 人工智能技术在电力设备运维检修中的研究及应用. 高电压技术. 2020(02): 369-383 .
    13. 裴璐,杜浩,黄照贺,黄焕强,吴钊铭. 基于红外检测的电力设备运行风险智能诊断. 电力设备管理. 2020(09): 121-122+132 .
    14. 缪希仁,刘志颖,鄢齐晨. 无人机输电线路智能巡检技术综述. 福州大学学报(自然科学版). 2020(02): 198-209 .
    15. 刘云鹏,许自强,李刚,夏彦卫,高树国. 人工智能驱动的数据分析技术在电力变压器状态检修中的应用综述. 高电压技术. 2019(02): 337-348 .
    16. 佟岗. 探讨铁路电力线路应用GIS技术实现智能维护管理方案. 电子元器件与信息技术. 2019(05): 88-91 .

    Other cited types(4)

Catalog

    Article views (392) PDF downloads (159) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return