CHEN Shuzhen, QI Jiaojiao, WANG Dan, CHENG Jie, GAO Hua, HE Bin. Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices[J]. Infrared Technology , 2022, 44(10): 1033-1040.
Citation: CHEN Shuzhen, QI Jiaojiao, WANG Dan, CHENG Jie, GAO Hua, HE Bin. Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices[J]. Infrared Technology , 2022, 44(10): 1033-1040.

Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices

More Information
  • Received Date: June 25, 2021
  • Revised Date: August 09, 2021
  • The roughness of material surfaces has a significant impact on the quality of passivation films and the lithography and etching of contact holes. Therefore, studying the influence of the surface roughness of materials on the performance of HgCdTe infrared focal plane devices' is important. In this study, we separately evaluated the influence of the facet morphology and step morphology of mercury cadmium telluride on the performance of the device and the influence of mercury cadmium telluride materials with different surface roughness on the preparation process and final performance of the device. Studies have shown that as the surface roughness of the materials increases, the quality of the passivation layers decreases, uniformity of the contact holes decreases, morphology of the contact holes deteriorates, and I-V performance is degraded, eventually leading to an increase in the non-uniformity of the device responses and an increase in the blind pixel rate.
  • [1]
    杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG J R. Physics and Technology of HgCdTe of Materials[M]. Beijing: National Defense Insustry Press, 2012.
    [2]
    杨海燕, 周晓珺, 侯晓敏, 等. 碲锌镉衬底晶向对碲镉汞薄膜表面形貌的影响[J]. 激光与红外, 2018, 482(11): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201811015.htm

    YANG H Y, ZHOU X J, HOU X M, et al. The influence of the orientation of CdZnTe substrate on the morphology of HgCdTe film[J]. Laser & Infrared, 2018, 482(11): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201811015.htm
    [3]
    杨海燕, 胡尚正, 郭明珠, 等. 衬底表面状态对碲镉汞薄膜表面起伏的影响[J]. 激光与红外, 2017, 47(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201706019.htm

    YANG H Y, HU S Z, GUO M Z. Influence of surface state of CdZnTe substrate on the surface fluctuation of HgCdTe film[J]. Laser & Infrared, 2017, 47(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201706019.htm
    [4]
    谭震, 杨海玲, 孙海燕, 等. 大面阵碲镉汞长波红外焦平面器件刻蚀工艺非均匀性研究[J]. 红外, 2019, 40(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201909002.htm

    TAN Z, YANG H L, SUN H Y. Research on non-uniformity of etching process for large-format long wave infrared mercury cadmium telluride focal plane device[J]. Infrared, 2019, 40(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201909002.htm
    [5]
    李震, 胡小燕, 史春伟, 等. 碲镉汞器件接触孔的ICP刻蚀工艺研究[J]. 激光与红外, 2008(12): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200812011.htm

    LI Z, HU X Y, SHI C W. A study of MCT contact hole etching by ICP process[J] Laser & Infrared, 2008(12): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200812011.htm
    [6]
    孙丽媛, 高志远, 张露, 等. GaAs材料ICP刻蚀中光刻胶厚度及刻蚀条件对侧壁倾斜度的影响[J]. 功能材料与器件学报, 2012, 18(4): 283-290. DOI: 10.3969/j.issn.1007-4252.2012.04.004

    SUN LY, GAO Z Y, ZHANG L. The innuence of photopersist thickness and etching condition on the slope during the ICP etching process of GaAs[J]. Journal of Functional Matierials and Devices, 2012, 18(4): 283-290. DOI: 10.3969/j.issn.1007-4252.2012.04.004
    [7]
    许娇. 红外探测器暗电流成份分析和机理研究[D]. 上海: 中国科学院大学(上海技术与物理研究所), 2016.

    XU J. Analysis on Dark Current Components of Infrared Detector and Its Mechanism Research[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics), 2016.
    [8]
    乔辉. 航天碲镉汞红外探测器工艺与暗电流研究[D]. 上海: 中国科学院大学(上海技术与物理研究所), 2016.

    QIAO H. Study on the Fabrication and Dark Current Characteristics of Spaceborne Mercury Cadmium Telluride Infrared Photodetectors[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Instituteof Technical Physics), 2016.
    [9]
    宋伟林, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202102001.htm

    SONG W L, KONG J C, LI D S. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202102001.htm
    [10]
    HE Kai, ZHOU Songmin, YANG Li, et al. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes[J]. Journal of Applied Physics, 2015, 117(20): 204501
    [11]
    JIANG F S, SU Y K, CHANG S M, et al. Analysis of the current of focal-plane-array HgCdTe diodes[J]. Materials Chemistry and Physics, 2000, 64(2): 131-136.
    [12]
    LU Q, WANG X, ZHOU S, et al. Effects of different passivation layers on RV characteristics of long-wave HgCdTe gate-controlled diodes[J]. Semiconductor Science and Technology, 2020, 35(9): 095003.
    [13]
    Gopal V, Gupta S, Bhan R K, et al. Modeling of dark characteristics of mercury cadmium telluride n+-p junctions[J]. Infrared Physics & Technology, 2003, 44(2): 143-152.
    [14]
    何凯. 碲镉汞红外光伏探测器电学性能表征技术研究[D]. 上海: 中国科学院大学(上海技术与物理研究所), 2015.

    HE K. Electrical Characterization Technique of HgCdTe Infrared Photovoltaic Dtectors[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics), 2015.
    [15]
    Lopez L, Daoud W A, Dutta D, et al. Effect of substrate morphology and photocatalysis of large-scale TiO2 films[J]. Applied Surface Science, 2013, 265: 162-168.
    [16]
    Karaksina E V, Gracheva T, Ashevarenkov D N. Structual defects in CVD ZnS[J]. Inorganic Materials, 2010, 46(1): 6-10.
    [17]
    Pelliccione M, Tansel Karabacak, Churamani Gaire, et al. Mound formation in surface growth under shadowing[J]. Physical Review B, 2006, 74(12): 5420-1-5420-10.
    [18]
    陈书真. ZnS薄膜硫化生长及其结构与光学性能研究[D]. 武汉: 武汉科技大学, 2020.

    CHEN S Z. Study on the Growth and Structure and Optical Properties of ZnS Thin Films Prepared by Sulfidation[D]. Wuhan: Wuhan University of Science and Technology, 2020.
  • Related Articles

    [1]MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.
    [2]ZHANG Long, DONG Feng, FU Yutian. Non-uniformity Correction for Infrared Image Using Neural Networks[J]. Infrared Technology , 2018, 40(2): 164-169.
    [3]ZHANG Ning, CHAI Mengyang, ZHAO Hangbin, SUN Dexin. On-chip Bias Point-by-Point Non-uniformity Correction of Uncooled Infrared Detector[J]. Infrared Technology , 2017, 39(8): 682-687.
    [4]ZHANG Qiuxuan, WANG Weibing, LI jia. Non-uniformity Correction of Infrared Detector Based on Compensation Algorithm[J]. Infrared Technology , 2017, 39(7): 621-625.
    [5]TAN Dong-jie, ZHANG An. Non-uniformity Correction Based on Local Histogram Specification[J]. Infrared Technology , 2013, (6): 325-328.
    [6]JIN Ming-lei, JIN Wei-qi, LIU Chong-liang, FAN Yong-jie. Reference Source for Non-uniformity Correction of the Infrared Focal Plane Arrays[J]. Infrared Technology , 2012, 34(7): 383-388. DOI: 10.3969/j.issn.1001-8891.2012.07.002
    [7]SU De-lun, ZHANG Jin-sheng, LIAO Shou-yi. Measurement of Resistor Array Non-uniformity[J]. Infrared Technology , 2010, 32(6): 345-348,352. DOI: 10.3969/j.issn.1001-8891.2010.06.008
    [8]Study and Implementation of IRFPA Non-uniformity Correction[J]. Infrared Technology , 2004, 26(3): 11-14. DOI: 10.3969/j.issn.1001-8891.2004.03.003
    [9]Research of Improving the Non-uniformity Correction in IRFPAs[J]. Infrared Technology , 2002, 24(1): 4-7,11. DOI: 10.3969/j.issn.1001-8891.2002.01.002
    [10]Study on Non-uniformity Correction of Infrared Image[J]. Infrared Technology , 2002, 24(1): 1-3. DOI: 10.3969/j.issn.1001-8891.2002.01.001
  • Cited by

    Periodical cited type(4)

    1. 白皓,白廷柱. 基于深度残差神经网络的红外图像超分辨率重构算法. 红外技术. 2024(02): 176-182 . 本站查看
    2. 董景,杨仲超,杨雪纯,许丽,张可抒. 基于VR虚拟现实技术的变电站智能巡检多场景识别模型研究. 微型电脑应用. 2022(12): 199-203 .
    3. 左岑,杨秀杰,张捷,王璇. 基于轻量级金字塔密集残差网络的红外图像超分辨增强. 红外技术. 2021(03): 251-257 . 本站查看
    4. 沈旭,程小辉,王新政. 结合视觉注意力机制基于尺度自适应局部对比度增强的红外弱小目标检测算法. 红外技术. 2019(08): 764-771 . 本站查看

    Other cited types(2)

Catalog

    Article views (148) PDF downloads (65) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return