Citation: | YU Jianyun, KONG Jincheng, QIN Gang, YANG Jin, SONG Linwei, CONG Shuren, LI Yanhui. High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices[J]. Infrared Technology , 2023, 45(1): 15-22. |
[1] |
褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.
CHU Junhao. Narrow-gap semiconductor physics[M]. Beijing: Science Press, 2005.
|
[2] |
杨健荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.
YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
|
[3] |
Rogalski Antoni, Martyniuk Piotr, Kopytko Małgorzata, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501. DOI: 10.3390/app11020501
|
[4] |
覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm
QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm
|
[5] |
Reibel Yann, Taalat R, Brunner A, et al. Infrared SWAP detectors: pushing the limits[C]//Proc. of SPIE, 2015, 9451: 945110-1.
|
[6] |
Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Proc. of SPIE, 2014, 9070: 90701D-1.
|
[7] |
Eich D, WSchirmacher, SHanna, et al. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current[J]. Journal of Electronic Materials, 2017, 46(9): 5448-5457. DOI: 10.1007/s11664-017-5596-4
|
[8] |
Rubaldo Laurent, Brunner Alexandre, Guinedor Pierre, et al. Recent advances in Sofradir IR on Ⅱ-Ⅵ photodetectors for HOT applications[C]//Quantum Sensing & Nano Electronics & Photonics Ⅷ, 2016: 9755.
|
[9] |
Kopytko M, Jóźwikowski K, Martyniuk P, et al. Status of HgCdTe barrier infrared detectors grown by MOCVD in military university of technology[J]. Journal of Electronic Materials, 2016, 45(9): 4563-4573. DOI: 10.1007/s11664-016-4702-3
|
[10] |
Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]//Proc. of SPIE, 1985: 0572.
|
[11] |
Ashley T, Elliott C T, Harker AT. Non-equilibrium modes of operation for infrared detectors[J]. Infrared Physics, 1986, 26(5): 303-315. DOI: 10.1016/0020-0891(86)90008-4
|
[12] |
Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595. DOI: 10.1007/s11664-016-4566-6
|
[13] |
Ashley T, Elliott C T, White A M. Infrared detection using minority carrier exclusion[C]//Proc. of SPIE, 1986, 588: 62-68. .
|
[14] |
Schuster J, DeWames R E, Wijewarnasuriya P S. Dark currents in a fully-depleted LWIR HgCdTe P-on-n heterojunction: analytical and numerical simulations[J]. Journal of Electronic Materials, 2017, 46(11): 6295-6305. DOI: 10.1007/s11664-017-5736-x
|
[15] |
Rogalski Antoni, Kopytko Małgorzata, Martyniuk Piotr. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes[J]. Applied Optics, 2018, 57(18): D11-D19. DOI: 10.1364/AO.57.000D11
|
[16] |
Donald Lee, Peter Dreiske, Jon Ellsworth, et al. Law 19: The ultimate photodiode performance metric[C]//Proc. of SPIE, 2018: 11407.
|
[17] |
Tennant W E, Lee D, Zandian M, et al. MBE HgCdTe technology: A very general solution to IR detection, Descibrdby'Rule 07', a very convenient heuristic[J]. Electron. Mater. 2008, 37: 1406-1410. DOI: 10.1007/s11664-008-0426-3
|
[18] |
Tennant W E. "Rule 07" Revisited: Still a Good Heuristic Predictor of p/n HgCdTe Photodiode Performance[J]. Journal of Electronic Materials, 2010, 39(7): 1030-1035. DOI: 10.1007/s11664-010-1084-9
|
[19] |
Jóźwikowska A, Ciupa R, Markowska O, et al. Enhanced numerical design of HgCdTe MWIR HOT P+ νN+ photodiodes[C]//2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2019: 85-86.
|
[20] |
Vallone M, Goano M, Bertazzi F, et al. Constraints and performance trade-offs in Auger-suppressed HgCdTe focal plane arrays[J]. Applied Optics, 2020, 59(17): E1-E8. DOI: 10.1364/AO.385075
|
[21] |
Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. DOI: 10.1007/s11664-006-0233-7
|
[22] |
Pillans Luke, Baker Ian, McEwen R Kennedy. Ultra-low power HOT MCT grown by MOVPE for handheld applications[C]//Proc. of SPIE, 2014, 9070: 90701E-1.
|
[23] |
Kinch M A, Schaake H F, Strong R L, et al. High operating temperature MWIR detectors[C]//Proc. of SPIE, 2010, 7660: 76602V-1.
|
[24] |
Priyalal S Wijewarnasuriya, Emelie P Y, Arvind D'Souza, et al. Nonequilibrium operation of arsenic diffused long-wavelength infrared hgcdte photodiodes[J]. Journal of Electronic Materials, 2008, 37(9): 1283-1290. DOI: 10.1007/s11664-008-0455-y
|
[25] |
Madejczyk P, Gawron W, Piotrowski A, et al. Improvement in performance of high-operating temperature HgCdTe photodiodes[J]. Infrared Physics and Technology, 2011, 54(3): 310-315. DOI: 10.1016/j.infrared.2010.12.036
|
[26] |
Paul Jerram, James Beletic. Teledyne's high performance infrared detectors for space missions[C]//Proc. of SPIE, 2018, 11180: 111803D-1.
|
[27] |
Péré-Laperne N, Berthoz J, Taalat R, et al. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology[C]//Proc. of SPIE, 2016, 9819: 545-557.
|
[28] |
AIM Infrarot-Module GmbH. HiPIR-Engine HOT MCT 1024×768 10 μm Pitch IR Engine[M/OL][2019-03-09]. http://www.Aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/01_HotCube/2018_AIM_datenblatt_A4_HOT-MCT-1024_engl.pdf
|
[29] |
Pillans L, Harmer J, Edwards T. Firefly: a HOT camera core for thermal imagers with enhanced functionality[C]//Proc. of SPIE, 2015, 9451: 270-280.
|
[30] |
Shafer T, Torres-Valladolid R, Burford R, et al. High operating temperature (HOT) midwave infrared (MWIR) 6 µm pitch camera core performance and maturity[C]//Proc. of SPIE, 2022, 12107: 215-229.
|
[31] |
周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW Infrared Detector Using MCT Technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
|
[32] |
陈慧卿, 史春伟, 胡尚正, 等. 中波碲镉汞p-on-n高温工作技术研究[J]. 激光与红外, 2020, 50(4): 435-438. DOI: 10.3969/j.issn.1001-5078.2020.04.009
CHEN Huiqin, SHI Chunwei, HU Shangzheng, et al. Study on p-on-n technology of the MWIR HgCdTe fot HOT Work[J]. LASER & INFRARED, 2020, 50(4): 435-438. DOI: 10.3969/j.issn.1001-5078.2020.04.009
|
[33] |
刘伟华, 刘帆, 吴正虎, 等. 12μm像元间距1280×1024碲镉汞中波红外焦平面探测器的制备及性能研究[J]. 红外, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm
LIU Weihua, LIU Fan, WU Zhenghu, et al. Study on Preparation and Performance of 1280×1024@12 μm HgCdTe MWIR Focal Plane Detectors[J]. Infrared, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm
|
[34] |
Rogalski A, Martyniuk P. Midwavelength infrared nBn for HOT detectors[J]. Journal of Electronic Material, 2014, 43(8): 2963-2969. DOI: 10.1007/s11664-014-3161-y
|
[35] |
David Z Ting, Alexander Soibel, Arezou Khoshakhlagh, et al. Theoretical analysis of nBn infrared photodetectors[J]. Opt. Eng., 2017, 56(9): 091606.
|
[1] | LUO Yun, CHEN Jun, HUANG Wei, LI Jiapeng, ZHU Zhengrong, HUANG Enhe, HUANG Rong, ZHOU Fanqin, RAO Yongxing, BI Xiang, YANG Jinqing. Micro Linear Stirling Cooler for HOT IR Detectors[J]. Infrared Technology , 2025, 47(4): 517-522. |
[2] | ZHAO Wenli, LI Haolan, SUN Hao, HUANG Wei, LI Renzhi, HUAN Jian, CHEN Jun, ZHANG Yingxu, XU Ruiju. Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors[J]. Infrared Technology , 2023, 45(2): 195-201. |
[3] | CHEN Dongqiong, YANG Wenyun, DENG Gongrong, GONG Xiaoxia, FAN Mingguo, XIAO Tingting, SHANG Falan, YU Ruiyun. Research Progress of InAsSb Infrared Detectors[J]. Infrared Technology , 2022, 44(10): 1009-1017. |
[4] | ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772. |
[5] | QIN Gang, XIA Fei, ZHOU Xiaofeng, HONG Xiubin, LI Junbing, YANG Chunzhang, LI Yanhui, CHANG Chao, YANG Jin, LI Dongsheng. HgCdTe HOT Infrared Devices Based on nBn Barrier Impeded Structure[J]. Infrared Technology , 2018, 40(9): 853-862. |
[6] | DENG Gongrong, ZHAO Peng, YUAN Jun, XIN Sishu, GONG Xiaoxia, LI Bingzhe, MA Qi, YANG Wenyun, PU Chaoguang. Status of Sb-based HOT Infrared Detectors[J]. Infrared Technology , 2017, 39(9): 780-784. |
[7] | ZHOU Lianjun, HAN Fuzhong, BAI Piji, SHU Chang, SUN Hao, WANG Xiaojuan, LI Jinghui, ZOU Pengcheng, GUO Jianhua, WANG Qiongfang. Review of HOT MW Infrared Detector Using MCT Technology[J]. Infrared Technology , 2017, 39(2): 116-124. |
[8] | YAO Guan-sheng, ZHANG Xiang-feng, DING Jia-xin, LV Yan-qiu. Research on the Photoelectric Characteristics of the Pt/CdS Schottky UV Detector[J]. Infrared Technology , 2014, (6): 443-445. |
[9] | LIU Zhi-ming, GAO Min-guang, ZHANG Tian-shu, XU Liang. Measuring the Temperature of Hot Gas by FTIR Spectrometry[J]. Infrared Technology , 2007, 29(4): 243-246. DOI: 10.3969/j.issn.1001-8891.2007.04.014 |
[10] | QIN qiang, ZHU Xi-chen, YANG Wen-yun. The Development of Pt/CdS Schottky Barrier Ultraviolet Detector[J]. Infrared Technology , 2006, 28(4): 234-237. DOI: 10.3969/j.issn.1001-8891.2006.04.013 |
1. |
王文金,孔金丞,起文斌,张阳,宋林伟,吴军,赵文,俞见云,覃钢. 基于VLPE技术的碲镉汞p-on-n双层异质结材料与器件研究进展. 红外技术. 2024(03): 233-245 .
![]() |