WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology , 2024, 46(3): 233-245.
Citation: WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology , 2024, 46(3): 233-245.

Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE

More Information
  • Received Date: July 13, 2023
  • Revised Date: August 29, 2023
  • This paper compares four different fabrication methods for mercury cadmium telluride (HgCdTe) p-on-n devices. Among these methods, vertical liquid-phase epitaxy (VLPE) stands out because of its unique advantages, particularly the high activation rate of in situ arsenic (As) dopants. VLPE is an essential approach for producing high-performance p-on-n double heterojunction devices. This paper reviews the research progress, both domestically and internationally, covering material growth, device processes, and performance. The discrepancies between domestic and foreign research are discussed, and the key challenges and technical bottlenecks hindering VLPE technology development are identified. Several solutions have been proposed to solve this problem. This study provides insights into the future trends of VLPE technology for p-on-n heterojunction devices, which hold significant promise in semiconductor devices.
  • [1]
    Lawson W, Nielsen S, Putley E, et al. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe[J]. Journal of Physics and Chemistry of Solids, 1959, 9(3-4): 325-329. DOI: 10.1016/0022-3697(59)90110-6
    [2]
    Capper P. Properties of narrow-gap cadmium-based compounds[J]. Optoelectronics IEE Proceedings, 1994, 142(6): 315.
    [3]
    LEI W, Antoszewski J, Faraone O. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303. DOI: 10.1063/1.4936577
    [4]
    Paul W Kruse, Laurence D McGlauchlin, Richmond B McQuistan. Elements of Infrared Technology[M]. New York: Wiley, 1962.
    [5]
    Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the hot infrared photodetectors[J]. Applied Sciences-Basel, 2021, 11(2): 501. DOI: 10.3390/app11020501
    [6]
    Kinch M A. The future of infrared; Ⅲ–Vs or HgCdTe?[J]. Journal of Electronic Materials, 2015, 44(9): 1-8.
    [7]
    孔金丞, 李艳辉, 杨春章, 等. 昆明物理研究所分子束外延MCT薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. DOI: 10.3969/j.issn.1000-985X.2020.12.002

    KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE growth of HgCdTe at kunming institute of physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229. DOI: 10.3969/j.issn.1000-985X.2020.12.002
    [8]
    杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
    [9]
    宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd

    SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
    [10]
    Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[J]. Proceedings of SPIE. International Society for Optics and Photonics, 2006, 6206: 620610-1-12.
    [11]
    Kinch M A. HDVIPTM FPA technology at DRS[C]//Proceedings of SPIE - International Society for Optics and Photonics, 2001, 4369: 566-578.
    [12]
    李立华, 熊伯俊, 杨超伟, 等. p-on-n长波, 甚长波碲镉汞红外焦平面器件技术研究[J]. 红外与毫米波学报, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202204001.htm

    LI Lihua, XIONG Bojun, YANG Chaowei, et al. Research on p-on-n LWIR and VLWIR HgCdTe infrared focal plane detectors technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202204001.htm
    [13]
    Ashley T, Elliott C T. Non-equilibrium devices for infrared detection[J]. Electronics Letters, 1985, 21(10): 451-452. DOI: 10.1049/el:19850321
    [14]
    俞见云, 孔金丞, 覃钢, 等. 基于非平衡模式的碲镉汞高工作温度探测器[J]. 红外技术, 2023, 45(1): 15-22. http://hwjs.nvir.cn/article/id/f6eb8c94-ee87-4451-babe-88c97d41e4b3

    YU Jianyun, KONG Jincheng, QIN Gang, et al. High operation temperature non-equilibrium photovoltaic HgCdTe devices[J]. Infrared Technology, 2023, 45(1): 15-22. http://hwjs.nvir.cn/article/id/f6eb8c94-ee87-4451-babe-88c97d41e4b3
    [15]
    Klipstein P. XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6940: 69402U.
    [16]
    Klipstein P. Depletion-less photodiode with suppressed dark current and method for producing the same[P]. United States Patent 7795640, [2010-09-14].
    [17]
    Gravrand O, Mollard L, Largeron C, et al. Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe[J]. Journal of Electronic Materials, 2009, 38(8): 1733-1740. DOI: 10.1007/s11664-009-0795-2
    [18]
    Casselman T N. Calculation of the Auger lifetime in degenerate n-type (Hg, Cd)Te[C]//Physics of Narrow Gap Semiconductors, 1982, 152(4): 147-151.
    [19]
    Casselman T N. Calculation of the Auger lifetime in p-type Hg1-xCdxTe[J]. Journal of Applied Physics, 1981, 52(2): 848-854. DOI: 10.1063/1.328426
    [20]
    Jozwikowski K, Jozwikowska A. The influence of shallow donor and acceptor states on carriers' lifetime in long wavelength HgCdTe infrared detectors[J]. Infrared Physics and Technology, 2021, 117: 103853. DOI: 10.1016/j.infrared.2021.103853
    [21]
    Kopytko M, Rogalski A. Figure of merit for infrared detector materials[J]. Infrared Physics and Technology, 2022, 122: 104063. DOI: 10.1016/j.infrared.2022.104063
    [22]
    覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 20200328-1-20200328-11.

    QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328-1-20200328-11.
    [23]
    Kopytko M, Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes[J]. Sensors and Actuators A: Physical, 2022, 339: 113511. DOI: 10.1016/j.sna.2022.113511
    [24]
    Vilela M F, Hogan J, Fennell B T, et al. Infinite-Melt vertical liquid-Phase epitaxy of HgCdTe from Hg solution: from VLWIR to SWIR[J]. Journal of Electronic Materials, 2022, 51(9): 4731-4741. DOI: 10.1007/s11664-022-09810-5
    [25]
    沈川, 陈路, 卜顺栋, 等. 高温热退火对多层P-on-N结构HgCdTe的界面影响[J]. 红外与毫米波学报, 2021, 40(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102004.htm

    SHEN Chuan, CHEN Lu, BU Shundong, et al. Effect of thermal annealing on the interface changes of multi-layer HgCdTe P-on-N materials grown by MBE[J]. J. Infrared Millim. Waves, 2021, 40(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102004.htm
    [26]
    Wenus J, Rutkowski J, Rogalski A. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes[J]. IEEE Transactions on Electron Devices, 2001, 48(7): 1326-1332. DOI: 10.1109/16.930647
    [27]
    陈正超, 唐利斌, 郝群, 等. HgCdTe多层异质结红外探测材料与器件研究进展[J]. 红外技术, 2022, 44(9): 889-903. http://hwjs.nvir.cn/article/id/69c43112-b6de-4310-b0fb-9d509cd06375

    CHEN Zhengchao, TANG Libin, HAO Qun, et al. Research progress on infrared detection materials and devices of HgCdTe multilayer heterojunction[J]. Infrared Technology, 2022, 44(9): 889-903. http://hwjs.nvir.cn/article/id/69c43112-b6de-4310-b0fb-9d509cd06375
    [28]
    Lovecchio P, Wong K, Parodos T, et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes[J/OL]. Infrared Detector Materials and Devices, 2004: 65-72.https://www.researchgate.net/publication/253633857_Advances_in_liquid_phase_epitaxial_growth_of_Hg1-xCdxTe_for_SWIR_through_VLW IR_photodiodes.
    [29]
    LI X, WANG X, ZHOU S, et al. Comparative study on dark current mechanisms of n-on-p and p-on-n long-wavelength HgCdTe infrared detectors[J]. Infrared Physics & Technology, 2022, 123: 104166.
    [30]
    Reibel Y, Rubaldo L, Bonnouvrier G, et al. Latest developments in advanced MCT infrared cooled detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications Ⅷ, 2011: 15-26.
    [31]
    Castelein P, Baier N, Gravrand O, et al. Latest developments in the p-on-n HgCdTe architecture at DEFIR[C]//Infrared Technology and Applications XL, 2014: 853-866.
    [32]
    Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Infrared Technology and Applications XL, 2014: 395-406.
    [33]
    Tennant W, Lee D, Zandian M, et al. MBE HgCdTe technology: a very general solution to IR detection, described by "Rule 07", a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410. DOI: 10.1007/s11664-008-0426-3
    [34]
    覃钢, 李东升. 分子束外延碲镉汞薄膜的砷掺杂技术[J]. 红外技术, 2015, 37(10): 858-863. http://hwjs.nvir.cn/article/id/hwjs201510010

    QIN Gang, LI Dongsheng. The As-doping technique of HgCdTe thin film by MBE[J]. Infrared Technology, 2015, 37(10): 858-863. http://hwjs.nvir.cn/article/id/hwjs201510010
    [35]
    Arias J, Zandian M, Pasko J, et al. Molecular beam epitaxy growth and insitu arsenic doping of p-on-n HgCdTe heterojunctions[J]. Journal of Applied Physics, 1991, 69(4): 2143-2148. DOI: 10.1063/1.348741
    [36]
    Capper P, Whiffin P A C, Easton B C, et al. Group Ⅴ acceptor doping of CdxHg1-xTe layers grown by metal-organic vapour phase epitaxy[J]. Materials Letters, 1988, 6: 365-368. DOI: 10.1016/0167-577X(88)90125-5
    [37]
    Hipwood L G, Baker I M, Jones C L, et al. LW IRFPAs made from HgCdTe grown by MOVPE for use in multispectral imaging[J]//Infrared Technology and Applications XXXIV, 2008, 6940: 69400G-69400G-8.
    [38]
    Bubulac L O. Defect, diffusion and activation in ion implanted HgCdTe[J]. Journal of Crystal Growth, 1988, 86: 723-734. DOI: 10.1016/0022-0248(90)90799-Q
    [39]
    Gilmore A S, Bangs J, Gerrish A, et al. Advancements in HgCdTe VLWIR materials[C]//Infrared Technology and Applications XXXI, 2005: 5783, DOI: 10.1117/12.607604.
    [40]
    Bratt P, Johnson S, Rhiger D, et al. Historical perspectives on HgCdTe material and device development at raytheon vision systems[C]//Infrared Technology and Applications XXXV, 2009, 7298: 1044-1078.
    [41]
    Reine M B. History of HgCdTe infrared detectors at BAE systems[C]//Infrared Technology and Applications XXXV, 2009, 7298: 995-1020.
    [42]
    李向阳, 方家熊. 碲镉汞p-on-n光伏器件优化掺杂的理论计算[J]. 红外与毫米波学报, 2002, 21(1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200201016.htm

    LI Xiangyang, FANG Jiaxiong. Theoretical calculation of doping optimization for p-on-n HgCdTe photodiode[J]. Journal of Infrared and Millimeter Waves, 2002, 21(1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200201016.htm
    [43]
    Prigozhin I, Zhu M, Bellotti E. Numerical modeling of graded bandgap long wavelength infrared HgCdTe avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3791-3797. DOI: 10.1109/TED.2022.3177701
    [44]
    Schuster J, Dewames R, Wijewarnasuriya P. Dark currents in a fully-depleted LWIR HgCdTe P-on-n heterojunction: analytical and numerical simulations[J]. Journal of Electronic Materials, 2017, 46: 6295-6305. DOI: 10.1007/s11664-017-5736-x
    [45]
    Reine M B, Tobin S P, Norton P W, et al. Very long wavelength (>15µm) HgCdTe photodiodes by liquid phase epitaxy[J]. Infrared Detector Materials and Devices, 2004, 5564: 54-64. DOI: 10.1117/12.557317
    [46]
    Stobie J, Hairston A, Tobin S, et al. VLIWR HgCdTe staring focal plane array development[C]//Proceedings of SPIE - Infrared Systems & Photoelectronic Technology Ⅱ, 2007, 6660: 66600L-1-10.
    [47]
    Hutchins M, Smith F, Tobin S, et al. Improved operability in Hg 1-xCdxTe detector arrays[J]. Journal of Electronic Materials, 1999, 28: 624-629. DOI: 10.1007/s11664-999-0045-7
    [48]
    Smith E, Venzor G, Newton M, et al. Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication[J]. Journal of Electronic Materials, 2005, 34: 746-753. DOI: 10.1007/s11664-005-0014-8
    [49]
    Benson J, Stoltz A, Varesi J, et al. Determination of the ion angular distribution for electron cyclotron resonance plasma-etched HgCdTe trenches[J]. Journal of Electronic Materials, 2004, 33: 543-551. DOI: 10.1007/s11664-004-0044-7
    [50]
    ZHAO W, Cook J, Parodos T, et al. Microstructural characterization of CdTe surface passivation layers[J]. Journal of Electronic Materials, 2010, 39: 924-929. DOI: 10.1007/s11664-010-1176-6
    [51]
    Reine M, Tobin S, Norton P, et al. Predicted performance of HgCdTe photodiodes for 15-25 µm detection[C]//Infrared Technology and Applications XXXI, 2005, 5783: 211-222.
    [52]
    Maschhoff K R. AIRS-Light instrument concept and critical technology development[C]//Infrared Spaceborne Remote Sensing X, 2002: 242-249.
    [53]
    Krueger E E, Lee D, Miller C R, et al. HgCdTe photodiodes with cutoff wavelengths of 17 μm at 70 K for use in high-resolution interferometers for remote sensing[C]//Infrared Spaceborne Remote Sensing Ⅴ, 1997: 355-372.
    [54]
    田震, 宋淑芳, 王小菊, 等. 碲镉汞p-on-n长波异质结探测器材料的制备研究[J]. 激光与红外, 2018, 48(6): 730-734. DOI: 10.3969/j.issn.1001-5078.2018.06.012

    TIAN Zhen, SONG Shufang, WANG Xiaoju, et al. Study on fabrication of p-on-n LW HgCdTe heterostructure materials[J]. Laser & Infrared, 2018, 48(6): 730-734 DOI: 10.3969/j.issn.1001-5078.2018.06.012
    [55]
    孔金丞, 宋林伟, 起文斌, 等. 昆明物理研究所大面积水平推舟液相外延碲镉汞薄膜技术进展[J]. 红外技术, 2023, 45(2): 111-122. http://hwjs.nvir.cn/article/id/7df58940-e7fc-43a8-abd4-1d5101fcd692

    KONG Jincheng, SONG Linwei, QI Wenbin, et al. Progress in LPE growth of HgCdTe at kunming institute of physics[J]. Infrared Technology, 2023, 45(2): 111-122. http://hwjs.nvir.cn/article/id/7df58940-e7fc-43a8-abd4-1d5101fcd692
    [56]
    宋林伟, 孔金丞, 赵鹏, 等. Au掺杂碲镉汞长波探测器技术研究[J]. 红外与激光工程, 2023, 52(4): 20220655. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202304001.htm

    SONG Linwei, KONG Jincheng, ZHAO Peng, et al. Research of Au-doped LWIR HgCdTe detector[J]. Infrared and Laser Engineering, 2023, 52(4): 20220655. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202304001.htm
    [57]
    Schuster J, Dewames R, Decuir Jr E, et al. Heterojunction depth in P+-on-n eSWIR HgCdTe infrared detectors: generation-recombination suppression[C]//Infrared Sensors, Devices, and Applications Ⅴ, 2015: 7-18.
  • Cited by

    Periodical cited type(20)

    1. 王杰,张梅. 基于局部自适应阈值和区域生长的水印分割算法研究. 印刷与数字媒体技术研究. 2025(02): 47-55 .
    2. 王琦,张欣唯,童悦,王昱晴,张锦,王咏涛,袁小翠. 一种复杂背景下电气设备红外图像精确分割方法. 激光与红外. 2025(03): 399-407 .
    3. 王振,刘磊. 基于改进分水岭算法的电力设备红外图像分割. 红外技术. 2025(04): 484-492 . 本站查看
    4. 席琳,高强,李栋. 电力设备的红外图像故障区域分割方法. 天津理工大学学报. 2024(03): 97-103 .
    5. 李大华,李潍璇,高强,于晓,沈洪宇. 电力设备红外图像分割的自适应聚类区域生长法. 计算机应用与软件. 2023(04): 160-165+229 .
    6. 章斌,卢洪义,刘舜,桑豆豆,杨禹成. 发动机部件CT图像特征提取与区域生长算法. 兵工学报. 2023(04): 1171-1180 .
    7. 顾亚雄,冯爽爽. 一种复杂背景下的故障电气设备整体分割方法. 红外技术. 2023(05): 455-462 . 本站查看
    8. 程宏波,刘杰,林珊,王佳鑫,李宏逸. 一种非侵入式接触网导线舞动监测方法. 铁道标准设计. 2022(01): 151-155+172 .
    9. 葛黄徐,郑雷,江洪,郭一凡,周东国. 基于MST框架的PCNN输电线路红外热故障区域提取方法. 红外技术. 2022(07): 709-715 . 本站查看
    10. 郭锋,郑雷,葛黄徐,严碧武,郭一凡. 基于相似度阈值模糊聚类的红外区域提取方法. 红外技术. 2022(08): 863-869 . 本站查看
    11. 王海龙,张宏伟,张文. 基于SOA-Otsu的图像多阈值分割算法研究. 信息与电脑(理论版). 2021(02): 65-67 .
    12. 李云红,李传真,屈海涛,苏雪平,毕远东,谢蓉蓉. 基于改进人工蜂群正余弦优化的红外图像分割方法. 激光与红外. 2021(08): 1076-1080 .
    13. 张传俊,张春芳,程颖. 基于改进图像分割算法的电气设备故障状态实时监测. 九江学院学报(自然科学版). 2021(03): 26-28+34 .
    14. 王萌. 变电站故障过程可视化分析系统设计. 微型电脑应用. 2021(10): 203-204+208 .
    15. 齐小祥,李敏,朱颖,宋雨,杜卫东. 基于边缘检测的SAR图像自适应区域分割. 计算机工程与应用. 2021(22): 232-240 .
    16. 林亚君,林振衡,陈越. 基于YCbCr和Ostu算法的电力热故障区域提取. 莆田学院学报. 2020(02): 99-104 .
    17. 王晓飞,胡凡奎,黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法. 通信学报. 2020(05): 120-129 .
    18. 张庆宇,范玉刚,高阳. 基于单尺度Retinex与改进的K-均值聚类的涡流热成像缺陷检测. 红外技术. 2020(10): 1001-1006 . 本站查看
    19. 李宝芸,范玉刚,高阳. 基于OTSU和Canny算子的红外图像特征提取. 陕西理工大学学报(自然科学版). 2019(06): 33-40 .
    20. 王小芳,毛华敏. 一种复杂背景下的电力设备红外图像分割方法. 红外技术. 2019(12): 1111-1116 . 本站查看

    Other cited types(33)

Catalog

    Article views (207) PDF downloads (104) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return