Citation: | WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology , 2024, 46(3): 233-245. |
[1] |
Lawson W, Nielsen S, Putley E, et al. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe[J]. Journal of Physics and Chemistry of Solids, 1959, 9(3-4): 325-329. DOI: 10.1016/0022-3697(59)90110-6
|
[2] |
Capper P. Properties of narrow-gap cadmium-based compounds[J]. Optoelectronics IEE Proceedings, 1994, 142(6): 315.
|
[3] |
LEI W, Antoszewski J, Faraone O. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2015, 2(4): 041303. DOI: 10.1063/1.4936577
|
[4] |
Paul W Kruse, Laurence D McGlauchlin, Richmond B McQuistan. Elements of Infrared Technology[M]. New York: Wiley, 1962.
|
[5] |
Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the hot infrared photodetectors[J]. Applied Sciences-Basel, 2021, 11(2): 501. DOI: 10.3390/app11020501
|
[6] |
Kinch M A. The future of infrared; Ⅲ–Vs or HgCdTe?[J]. Journal of Electronic Materials, 2015, 44(9): 1-8.
|
[7] |
孔金丞, 李艳辉, 杨春章, 等. 昆明物理研究所分子束外延MCT薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. DOI: 10.3969/j.issn.1000-985X.2020.12.002
KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE growth of HgCdTe at kunming institute of physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229. DOI: 10.3969/j.issn.1000-985X.2020.12.002
|
[8] |
杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.
YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
|
[9] |
宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
|
[10] |
Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[J]. Proceedings of SPIE. International Society for Optics and Photonics, 2006, 6206: 620610-1-12.
|
[11] |
Kinch M A. HDVIPTM FPA technology at DRS[C]//Proceedings of SPIE - International Society for Optics and Photonics, 2001, 4369: 566-578.
|
[12] |
李立华, 熊伯俊, 杨超伟, 等. p-on-n长波, 甚长波碲镉汞红外焦平面器件技术研究[J]. 红外与毫米波学报, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202204001.htm
LI Lihua, XIONG Bojun, YANG Chaowei, et al. Research on p-on-n LWIR and VLWIR HgCdTe infrared focal plane detectors technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 534-539. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202204001.htm
|
[13] |
Ashley T, Elliott C T. Non-equilibrium devices for infrared detection[J]. Electronics Letters, 1985, 21(10): 451-452. DOI: 10.1049/el:19850321
|
[14] |
俞见云, 孔金丞, 覃钢, 等. 基于非平衡模式的碲镉汞高工作温度探测器[J]. 红外技术, 2023, 45(1): 15-22. http://hwjs.nvir.cn/article/id/f6eb8c94-ee87-4451-babe-88c97d41e4b3
YU Jianyun, KONG Jincheng, QIN Gang, et al. High operation temperature non-equilibrium photovoltaic HgCdTe devices[J]. Infrared Technology, 2023, 45(1): 15-22. http://hwjs.nvir.cn/article/id/f6eb8c94-ee87-4451-babe-88c97d41e4b3
|
[15] |
Klipstein P. XBn barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6940: 69402U.
|
[16] |
Klipstein P. Depletion-less photodiode with suppressed dark current and method for producing the same[P]. United States Patent 7795640, [2010-09-14].
|
[17] |
Gravrand O, Mollard L, Largeron C, et al. Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe[J]. Journal of Electronic Materials, 2009, 38(8): 1733-1740. DOI: 10.1007/s11664-009-0795-2
|
[18] |
Casselman T N. Calculation of the Auger lifetime in degenerate n-type (Hg, Cd)Te[C]//Physics of Narrow Gap Semiconductors, 1982, 152(4): 147-151.
|
[19] |
Casselman T N. Calculation of the Auger lifetime in p-type Hg1-xCdxTe[J]. Journal of Applied Physics, 1981, 52(2): 848-854. DOI: 10.1063/1.328426
|
[20] |
Jozwikowski K, Jozwikowska A. The influence of shallow donor and acceptor states on carriers' lifetime in long wavelength HgCdTe infrared detectors[J]. Infrared Physics and Technology, 2021, 117: 103853. DOI: 10.1016/j.infrared.2021.103853
|
[21] |
Kopytko M, Rogalski A. Figure of merit for infrared detector materials[J]. Infrared Physics and Technology, 2022, 122: 104063. DOI: 10.1016/j.infrared.2022.104063
|
[22] |
覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 20200328-1-20200328-11.
QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328-1-20200328-11.
|
[23] |
Kopytko M, Rogalski A. New insights into the ultimate performance of HgCdTe photodiodes[J]. Sensors and Actuators A: Physical, 2022, 339: 113511. DOI: 10.1016/j.sna.2022.113511
|
[24] |
Vilela M F, Hogan J, Fennell B T, et al. Infinite-Melt vertical liquid-Phase epitaxy of HgCdTe from Hg solution: from VLWIR to SWIR[J]. Journal of Electronic Materials, 2022, 51(9): 4731-4741. DOI: 10.1007/s11664-022-09810-5
|
[25] |
沈川, 陈路, 卜顺栋, 等. 高温热退火对多层P-on-N结构HgCdTe的界面影响[J]. 红外与毫米波学报, 2021, 40(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102004.htm
SHEN Chuan, CHEN Lu, BU Shundong, et al. Effect of thermal annealing on the interface changes of multi-layer HgCdTe P-on-N materials grown by MBE[J]. J. Infrared Millim. Waves, 2021, 40(2): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202102004.htm
|
[26] |
Wenus J, Rutkowski J, Rogalski A. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes[J]. IEEE Transactions on Electron Devices, 2001, 48(7): 1326-1332. DOI: 10.1109/16.930647
|
[27] |
陈正超, 唐利斌, 郝群, 等. HgCdTe多层异质结红外探测材料与器件研究进展[J]. 红外技术, 2022, 44(9): 889-903. http://hwjs.nvir.cn/article/id/69c43112-b6de-4310-b0fb-9d509cd06375
CHEN Zhengchao, TANG Libin, HAO Qun, et al. Research progress on infrared detection materials and devices of HgCdTe multilayer heterojunction[J]. Infrared Technology, 2022, 44(9): 889-903. http://hwjs.nvir.cn/article/id/69c43112-b6de-4310-b0fb-9d509cd06375
|
[28] |
Lovecchio P, Wong K, Parodos T, et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes[J/OL]. Infrared Detector Materials and Devices, 2004: 65-72.https://www.researchgate.net/publication/253633857_Advances_in_liquid_phase_epitaxial_growth_of_Hg1-xCdxTe_for_SWIR_through_VLW IR_photodiodes.
|
[29] |
LI X, WANG X, ZHOU S, et al. Comparative study on dark current mechanisms of n-on-p and p-on-n long-wavelength HgCdTe infrared detectors[J]. Infrared Physics & Technology, 2022, 123: 104166.
|
[30] |
Reibel Y, Rubaldo L, Bonnouvrier G, et al. Latest developments in advanced MCT infrared cooled detectors[C]//Electro-Optical and Infrared Systems: Technology and Applications Ⅷ, 2011: 15-26.
|
[31] |
Castelein P, Baier N, Gravrand O, et al. Latest developments in the p-on-n HgCdTe architecture at DEFIR[C]//Infrared Technology and Applications XL, 2014: 853-866.
|
[32] |
Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Infrared Technology and Applications XL, 2014: 395-406.
|
[33] |
Tennant W, Lee D, Zandian M, et al. MBE HgCdTe technology: a very general solution to IR detection, described by "Rule 07", a very convenient heuristic[J]. Journal of Electronic Materials, 2008, 37(9): 1406-1410. DOI: 10.1007/s11664-008-0426-3
|
[34] |
覃钢, 李东升. 分子束外延碲镉汞薄膜的砷掺杂技术[J]. 红外技术, 2015, 37(10): 858-863. http://hwjs.nvir.cn/article/id/hwjs201510010
QIN Gang, LI Dongsheng. The As-doping technique of HgCdTe thin film by MBE[J]. Infrared Technology, 2015, 37(10): 858-863. http://hwjs.nvir.cn/article/id/hwjs201510010
|
[35] |
Arias J, Zandian M, Pasko J, et al. Molecular beam epitaxy growth and insitu arsenic doping of p-on-n HgCdTe heterojunctions[J]. Journal of Applied Physics, 1991, 69(4): 2143-2148. DOI: 10.1063/1.348741
|
[36] |
Capper P, Whiffin P A C, Easton B C, et al. Group Ⅴ acceptor doping of CdxHg1-xTe layers grown by metal-organic vapour phase epitaxy[J]. Materials Letters, 1988, 6: 365-368. DOI: 10.1016/0167-577X(88)90125-5
|
[37] |
Hipwood L G, Baker I M, Jones C L, et al. LW IRFPAs made from HgCdTe grown by MOVPE for use in multispectral imaging[J]//Infrared Technology and Applications XXXIV, 2008, 6940: 69400G-69400G-8.
|
[38] |
Bubulac L O. Defect, diffusion and activation in ion implanted HgCdTe[J]. Journal of Crystal Growth, 1988, 86: 723-734. DOI: 10.1016/0022-0248(90)90799-Q
|
[39] |
Gilmore A S, Bangs J, Gerrish A, et al. Advancements in HgCdTe VLWIR materials[C]//Infrared Technology and Applications XXXI, 2005: 5783, DOI: 10.1117/12.607604.
|
[40] |
Bratt P, Johnson S, Rhiger D, et al. Historical perspectives on HgCdTe material and device development at raytheon vision systems[C]//Infrared Technology and Applications XXXV, 2009, 7298: 1044-1078.
|
[41] |
Reine M B. History of HgCdTe infrared detectors at BAE systems[C]//Infrared Technology and Applications XXXV, 2009, 7298: 995-1020.
|
[42] |
李向阳, 方家熊. 碲镉汞p-on-n光伏器件优化掺杂的理论计算[J]. 红外与毫米波学报, 2002, 21(1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200201016.htm
LI Xiangyang, FANG Jiaxiong. Theoretical calculation of doping optimization for p-on-n HgCdTe photodiode[J]. Journal of Infrared and Millimeter Waves, 2002, 21(1): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200201016.htm
|
[43] |
Prigozhin I, Zhu M, Bellotti E. Numerical modeling of graded bandgap long wavelength infrared HgCdTe avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3791-3797. DOI: 10.1109/TED.2022.3177701
|
[44] |
Schuster J, Dewames R, Wijewarnasuriya P. Dark currents in a fully-depleted LWIR HgCdTe P-on-n heterojunction: analytical and numerical simulations[J]. Journal of Electronic Materials, 2017, 46: 6295-6305. DOI: 10.1007/s11664-017-5736-x
|
[45] |
Reine M B, Tobin S P, Norton P W, et al. Very long wavelength (>15µm) HgCdTe photodiodes by liquid phase epitaxy[J]. Infrared Detector Materials and Devices, 2004, 5564: 54-64. DOI: 10.1117/12.557317
|
[46] |
Stobie J, Hairston A, Tobin S, et al. VLIWR HgCdTe staring focal plane array development[C]//Proceedings of SPIE - Infrared Systems & Photoelectronic Technology Ⅱ, 2007, 6660: 66600L-1-10.
|
[47] |
Hutchins M, Smith F, Tobin S, et al. Improved operability in Hg 1-xCdxTe detector arrays[J]. Journal of Electronic Materials, 1999, 28: 624-629. DOI: 10.1007/s11664-999-0045-7
|
[48] |
Smith E, Venzor G, Newton M, et al. Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication[J]. Journal of Electronic Materials, 2005, 34: 746-753. DOI: 10.1007/s11664-005-0014-8
|
[49] |
Benson J, Stoltz A, Varesi J, et al. Determination of the ion angular distribution for electron cyclotron resonance plasma-etched HgCdTe trenches[J]. Journal of Electronic Materials, 2004, 33: 543-551. DOI: 10.1007/s11664-004-0044-7
|
[50] |
ZHAO W, Cook J, Parodos T, et al. Microstructural characterization of CdTe surface passivation layers[J]. Journal of Electronic Materials, 2010, 39: 924-929. DOI: 10.1007/s11664-010-1176-6
|
[51] |
Reine M, Tobin S, Norton P, et al. Predicted performance of HgCdTe photodiodes for 15-25 µm detection[C]//Infrared Technology and Applications XXXI, 2005, 5783: 211-222.
|
[52] |
Maschhoff K R. AIRS-Light instrument concept and critical technology development[C]//Infrared Spaceborne Remote Sensing X, 2002: 242-249.
|
[53] |
Krueger E E, Lee D, Miller C R, et al. HgCdTe photodiodes with cutoff wavelengths of 17 μm at 70 K for use in high-resolution interferometers for remote sensing[C]//Infrared Spaceborne Remote Sensing Ⅴ, 1997: 355-372.
|
[54] |
田震, 宋淑芳, 王小菊, 等. 碲镉汞p-on-n长波异质结探测器材料的制备研究[J]. 激光与红外, 2018, 48(6): 730-734. DOI: 10.3969/j.issn.1001-5078.2018.06.012
TIAN Zhen, SONG Shufang, WANG Xiaoju, et al. Study on fabrication of p-on-n LW HgCdTe heterostructure materials[J]. Laser & Infrared, 2018, 48(6): 730-734 DOI: 10.3969/j.issn.1001-5078.2018.06.012
|
[55] |
孔金丞, 宋林伟, 起文斌, 等. 昆明物理研究所大面积水平推舟液相外延碲镉汞薄膜技术进展[J]. 红外技术, 2023, 45(2): 111-122. http://hwjs.nvir.cn/article/id/7df58940-e7fc-43a8-abd4-1d5101fcd692
KONG Jincheng, SONG Linwei, QI Wenbin, et al. Progress in LPE growth of HgCdTe at kunming institute of physics[J]. Infrared Technology, 2023, 45(2): 111-122. http://hwjs.nvir.cn/article/id/7df58940-e7fc-43a8-abd4-1d5101fcd692
|
[56] |
宋林伟, 孔金丞, 赵鹏, 等. Au掺杂碲镉汞长波探测器技术研究[J]. 红外与激光工程, 2023, 52(4): 20220655. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202304001.htm
SONG Linwei, KONG Jincheng, ZHAO Peng, et al. Research of Au-doped LWIR HgCdTe detector[J]. Infrared and Laser Engineering, 2023, 52(4): 20220655. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202304001.htm
|
[57] |
Schuster J, Dewames R, Decuir Jr E, et al. Heterojunction depth in P+-on-n eSWIR HgCdTe infrared detectors: generation-recombination suppression[C]//Infrared Sensors, Devices, and Applications Ⅴ, 2015: 7-18.
|
1. |
王杰,张梅. 基于局部自适应阈值和区域生长的水印分割算法研究. 印刷与数字媒体技术研究. 2025(02): 47-55 .
![]() | |
2. |
王琦,张欣唯,童悦,王昱晴,张锦,王咏涛,袁小翠. 一种复杂背景下电气设备红外图像精确分割方法. 激光与红外. 2025(03): 399-407 .
![]() | |
3. |
王振,刘磊. 基于改进分水岭算法的电力设备红外图像分割. 红外技术. 2025(04): 484-492 .
![]() | |
4. |
席琳,高强,李栋. 电力设备的红外图像故障区域分割方法. 天津理工大学学报. 2024(03): 97-103 .
![]() | |
5. |
李大华,李潍璇,高强,于晓,沈洪宇. 电力设备红外图像分割的自适应聚类区域生长法. 计算机应用与软件. 2023(04): 160-165+229 .
![]() | |
6. |
章斌,卢洪义,刘舜,桑豆豆,杨禹成. 发动机部件CT图像特征提取与区域生长算法. 兵工学报. 2023(04): 1171-1180 .
![]() | |
7. |
顾亚雄,冯爽爽. 一种复杂背景下的故障电气设备整体分割方法. 红外技术. 2023(05): 455-462 .
![]() | |
8. |
程宏波,刘杰,林珊,王佳鑫,李宏逸. 一种非侵入式接触网导线舞动监测方法. 铁道标准设计. 2022(01): 151-155+172 .
![]() | |
9. |
葛黄徐,郑雷,江洪,郭一凡,周东国. 基于MST框架的PCNN输电线路红外热故障区域提取方法. 红外技术. 2022(07): 709-715 .
![]() | |
10. |
郭锋,郑雷,葛黄徐,严碧武,郭一凡. 基于相似度阈值模糊聚类的红外区域提取方法. 红外技术. 2022(08): 863-869 .
![]() | |
11. |
王海龙,张宏伟,张文. 基于SOA-Otsu的图像多阈值分割算法研究. 信息与电脑(理论版). 2021(02): 65-67 .
![]() | |
12. |
李云红,李传真,屈海涛,苏雪平,毕远东,谢蓉蓉. 基于改进人工蜂群正余弦优化的红外图像分割方法. 激光与红外. 2021(08): 1076-1080 .
![]() | |
13. |
张传俊,张春芳,程颖. 基于改进图像分割算法的电气设备故障状态实时监测. 九江学院学报(自然科学版). 2021(03): 26-28+34 .
![]() | |
14. |
王萌. 变电站故障过程可视化分析系统设计. 微型电脑应用. 2021(10): 203-204+208 .
![]() | |
15. |
齐小祥,李敏,朱颖,宋雨,杜卫东. 基于边缘检测的SAR图像自适应区域分割. 计算机工程与应用. 2021(22): 232-240 .
![]() | |
16. |
林亚君,林振衡,陈越. 基于YCbCr和Ostu算法的电力热故障区域提取. 莆田学院学报. 2020(02): 99-104 .
![]() | |
17. |
王晓飞,胡凡奎,黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法. 通信学报. 2020(05): 120-129 .
![]() | |
18. |
张庆宇,范玉刚,高阳. 基于单尺度Retinex与改进的K-均值聚类的涡流热成像缺陷检测. 红外技术. 2020(10): 1001-1006 .
![]() | |
19. |
李宝芸,范玉刚,高阳. 基于OTSU和Canny算子的红外图像特征提取. 陕西理工大学学报(自然科学版). 2019(06): 33-40 .
![]() | |
20. |
王小芳,毛华敏. 一种复杂背景下的电力设备红外图像分割方法. 红外技术. 2019(12): 1111-1116 .
![]() |