基于非平衡模式的碲镉汞高工作温度探测器

俞见云, 孔金丞, 覃钢, 杨晋, 宋林伟, 丛树仁, 李艳辉

俞见云, 孔金丞, 覃钢, 杨晋, 宋林伟, 丛树仁, 李艳辉. 基于非平衡模式的碲镉汞高工作温度探测器[J]. 红外技术, 2023, 45(1): 15-22.
引用本文: 俞见云, 孔金丞, 覃钢, 杨晋, 宋林伟, 丛树仁, 李艳辉. 基于非平衡模式的碲镉汞高工作温度探测器[J]. 红外技术, 2023, 45(1): 15-22.
YU Jianyun, KONG Jincheng, QIN Gang, YANG Jin, SONG Linwei, CONG Shuren, LI Yanhui. High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices[J]. Infrared Technology , 2023, 45(1): 15-22.
Citation: YU Jianyun, KONG Jincheng, QIN Gang, YANG Jin, SONG Linwei, CONG Shuren, LI Yanhui. High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices[J]. Infrared Technology , 2023, 45(1): 15-22.

基于非平衡模式的碲镉汞高工作温度探测器

基金项目: 

基础加强计划技术领域项目 2019-JCJQ-JJ527

详细信息
    作者简介:

    俞见云(1990-),男,云南曲靖人,工程师,硕士研究生,研究方向是光电材料。E-mail: y976321338@163.com

    通讯作者:

    孔金丞(1979-),男,云南南华人,研究员级高级工程师,博士生导师,主要从事光电材料与器件研究。E-mail: Kongjincheng@163.com

  • 中图分类号: TN215

High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices

  • 摘要: 本文回顾了当前国内外高工作温度碲镉汞红外探测器的技术路线和相应的器件性能,在碲镉汞器件暗电流的温度特性分析的基础上,讨论了基于非平衡工作模式的碲镉汞探测器的基本原理、器件结构设计和暗电流机制,探讨了吸收层全耗尽碲镉汞器件性能与器件结构参数、材料晶体质量的关系,明确了其技术要点和难点,展望了碲镉汞高工作温度器件技术的发展趋势。
    Abstract: In this paper, we review both domestic and foreign state-of-the-art high operation temperature (HOT) MCT infrared detector technologies and their corresponding device performance. Based on the analysis of the characteristics of dark current versus temperature, we summarize the working principles under the non-equilibrium operation mode, device structure design and the origin of the dark current. We also determined the relationship between the performance of the fully depleted absorber device, device structure parameters, and material quality. We also discuss the technical key points of the development of a non-equilibrium operation-mode HOT infrared photodetector. Further development HOT MCT infrared detector technologies is expected.
  • 地球上海洋面积广阔且具有丰富的资源,如今随着经济的发展,每个国家对资源的需求不断增长,然而相比海洋资源,陆地上的资源随着人类大量开采而不断减少,因此,扩大对海洋资源的开发利用是未来人类发展的方向。不同于陆地环境,海洋环境存在着许多复杂的问题,在海洋环境下成像问题是最基础的问题同时也是最大的问题,这直接影响着是否能够探索到海洋资源。通常直接获取的水下图像会出现严重的噪声干扰、颜色衰退、图像信息的丢失等问题,这直接造成无法提取到有用的信息,无法进行后续工作的开展,因此进行水下图像增强具有重要的意义。

    水下图像增强一直是当前很多专家学者研究的方向。2018年,Mishra等[1]对CLAHE进行了改进并应用于水下图像增强,这种方法在很大程度上将水下图像的对比度得到提高,但是经过这种方法处理过的水下图像会出现部分细节模糊的现象。2019年,Sun等人[2]提出了一种暗通道先验结合MSRCR水下图像增强算法,该算法有效地解决了低照度水下图像颜色衰退的问题,但是增强后的图像会出现雾化的问题。2020年,Wang等人[3]提出了一种低照度多尺度Retinex水下图像增强算法。该方法可以有效避免图像在输出时产生光影,并且可以解决水下图像不清晰、对比度较差等问题。但是,实验结果表明水下图像在图像颜色衰退部分还是有待改进。同年,Dhanya等人[4]提出L-CLAHE增强滤波图像算法,该算法由L-CLAHE、增强和滤波三个模块组成。L-CLAHE模块的输出经过Gamma校正、直方图均衡化和双边滤波等强化和滤波阶段处理,结果表明,输出图像对比度得到改善,但是图像局部边缘细节视觉效果差。2021年,朱佳琦等人[5]提出一种红通道先验与CLAHE融合的水下增强算法,该算法首先利用红通道先验理论计算出预估透射率,然后在CLAHE算法增强图像前加入Gamma校正,实验结果表明,图像整体对比度得到改善,但是图像局部对比度差距较小时增强效果较差。范新南等人[6]提出一种MSRCR与多尺度融合的水下图像增强算法,该算法首先将图像进行色偏校正并转换到Lab颜色空间对亮度分量进行增强,然后对MSRCR色彩校正图像和Lab空间亮度分量进行多尺度分解并融合,增强后的水下图像色彩丰富,但是图像对比度没有得到有效改善。张薇等人[7]提出基于白平衡和相对全变分的低照度水下图像增强,算法采用灰度世界先验校正水下图像颜色,依据引导滤波的保边平滑性构造新的相对全变分约束来估计照度图,水下图像的颜色得到了校正,但是图像雾化严重对比度低,同时部分水下图像颜色容易校正过度。

    针对图像颜色衰退和图像结构复杂会导致局部区域过度增强色彩不真实和对比度低边缘细节模糊的问题,本文针对水下图像颜色衰退的问题提出用融合导向滤波的MSRCR算法,针对水下图像对比度低的问题提出融合Gamma校正的CLAHE算法,同时针对水下图像边缘细节模糊采用多尺度融合来增强图像中的边缘细节信息。最后通过对比实验,以验证本文所提出方法的有效性。

    多尺度Retinex(MSR)[8]在水下图像增强中通常会出现图像颜色衰退严重,噪声没有得到抑制,引起增强后的图像整体视觉效果不佳。Jobson等[9]提出的带色彩恢复因子的MSR算法(MSRCR)可以有效地解决图像颜色失真的问题,MSRCR的计算公式如下:

    $$ {R_{{\text{MSRCR}}}}(x, y) = {C_i}(x, y)\sum\limits_{n = 1}^N {{\omega _n}} \{ \ln I(x, y) - \ln [I(x, y)*{G_n}(x, y)]\} $$ (1)

    式中:I(x, y)为输入图像;Ci(x, y)表示图像第i个通道的颜色恢复参数,用来调节不同颜色通道之间的比例关系;N表示尺度数目,通常为3;ωn为第n个尺度的加权系数;Gn(x, y)为高斯滤波函数。

    高斯滤波通常易产生图像被过度光滑,导致图像缺乏边缘细节。针对此问题,本文在MSRCR中采用导向滤波[10]代替高斯低通滤波,以有效解决水下图像颜色失真的问题和MSRCR算法增强水下图像时易造成边缘细节丢失的问题。

    导向滤波的基本原理为对于输出图像和导向图在滤波窗口存在局部线性关系,其公式如下:

    $$ \begin{gathered} {q_i} = {p_i} - {n_i} \hfill \\ {q_i} = {a_k}{I_i} + {b_k}, \forall i \in {\omega _k} \hfill \\ \end{gathered} $$ (2)

    式中:pi为输入图像;Ii为导向图;qi为输出图像;ni为噪声;ak, bk为局部线性函数系数;ωk为滤波窗口。

    对于在确定的窗口ωk中,ak, bk将会是唯一的常量系数,这就保证了在局部区域里,如果导向图Ii有一个边缘的时候,输出图像qi也保持边缘不变。因此只要求得了系数ak, bk也就得到了输出图像qi。为使得输入图像和输出图像的差别特别小,而且还可以保持局部线性模型,利用带正则项的岭回归计算滤波窗口内的损失函数E(ak, bk),计算过程如下:

    $$ E({a_k}, {b_k}) = \sum\limits_{i \in {\omega _k}}^{} {({{({a_k}{I_i} + {b_k} - {p_i})}^2} + \varepsilon {a_k}^2)} $$ (3)
    $$ \begin{gathered} {a_k} = \frac{{\frac{1}{{|\omega |}}\sum\limits_{i \in {\omega _k}}^{} {{I_i}{p_i} - {\mu _k}{{\overline p }_k}} }}{{{\sigma _k}^2 + \varepsilon }}, \quad {b_k} = {\overline p _k} - {a_k}{\mu _k} \hfill \\ {q_i} = \frac{1}{{|\omega |}}\sum\limits_{k|i \in {\omega _k}}^{} {({a_k}{I_i} + {b_k})} \hfill \\ \end{gathered} $$ (4)

    式中:μk, σk2分别是导向图在ωk窗口大小的均值与方差;ε为正则化参数;|ω|表示窗口内像素总数$\overline {{p_k}} = \frac{1}{{|\omega |}}\sum\limits_{i \in {\omega _k}}^{} {{p_i}} $表示在ωk窗口内输入图像的像素均值。

    使用线性相关参数(ak, bk),滤波输出图像就可以通过qiakIi+bk线性模型得到。针对不同的窗口大小我们就会得到不同的导向滤波输出图像qi值。

    本文在MSRCR算法中用导向滤波函数代替高斯低通滤波函数,具体计算如下:

    $$ {R^*}_{{\text{MSRCR}}}(x, y) = {C_i}(x, y)\sum\limits_{n = 1}^N {{\omega _n}} \{ \ln I(x, y) - \ln [I(x, y)*D(x, y)]\} $$ (5)

    式中:RMSRCR*(x, y)表示改进的MSRCR算法输出图像;D(x, y)为导向滤波函数。

    图 1(a)为水下拍摄的原图,图像整体呈现出颜色失真的状态;图 1(b)为经过MSR处理后的图像,图像对比度有所提高,但是颜色矫正不佳,出现了色偏;图 1(c)为经过MSRCR处理后的图像,图像对比度明显提高,但是图像局部细节较为模糊;图 1(d)为改进的MSRCR处理后的图像相较于图 1(c)图像边缘细节清晰。

    图  1  不同MSR的处理结果
    Figure  1.  Processing results of different MSR

    图 2(a)为经过MSRCR处理后选取局部区域放大后的图像,图 2(b)为经过改进MSRCR处理后选取局部区域放大后的图像。对比可得,图 2(b)的边缘细节更加清晰,改进后的MSRCR算法解决了MSRCR算法增强图像带来的部分边缘细节模糊的问题。

    图  2  局部细节图
    Figure  2.  Local diagrams in details

    常用的对比度增强算法[11-13]有HE(Histogram Equalization)、AHE(Adaptive Histogram Equalization)、CLAHE。HE算法主要是用来对图像的整体对比度进行增强,适用于图像的背景和前景接近的情况下。但是该方法在对较暗的区域均衡处理后由于亮度被拉得太高而出现噪点,并最终弱化了图像细节。AHE算法是在HE算法的基础上,将图像划分为几块分别处理,这样有利于处理图像数据的局部细节。但是该算法的复杂度较高,降低了图像的处理效率,同时图像块与块之间的过渡处理欠佳。CLAHE算法是在AHE算法的基础上进行改进,通过加入阈值对图像噪声进行抑制,同时通过使用线性插值的方法对图像区域块连接处进行优化,使图像整体变得平滑。但是CLAHE算法只提高了图像的对比度,然而并没有对图像的边缘细节信息进行增强。

    综上,本文在CLAHE算法中引入Gamma校正[14],在图像经过CLAHE处理前、后都加入Gamma校正,以增强图像整体对比度同时提高图像局部对比度,尤其对于相邻区域之间相差较小时增强效果明显。具体步骤如下所示:

    1)对图像进行Gamma校正并将图像分割成连续,非重叠的M×N的区域块,每个区域块含有的像素为n,区域块的大小与图像对比度的增强有着紧密的联系,区域块越大图像对比度增强越大,但是图像细节信息丢失的越多。

    2)获取每个区域块的直方图,根据每个区域块的直方图分布规律计算裁剪幅值T

    $$ T = {C_{{\text{clip}}}} \times \frac{{{N_x} \times {N_y}}}{H} $$ (6)

    式中:Cclip是裁剪系数;Nx, Ny为在每个子块x, y方向上的像素个数;H为灰度级数。

    3)计算出图像区域块的分布直方图并设置阈值,将高于阈值的直方图部分进行切除,同时将该部分平均分布在直方图的下方,如图 3所示。

    图  3  CLAHE算法直方图变换过程
    Figure  3.  Histogram transformation process of CLAHE algorithm

    4)在重新分配后的直方图上,对每个区域块进行直方图均衡化,同时对区域块的位置进行像素重构。

    5)对图像进行Gamma校正。如式(7)所示,当γ<1时,如果图像区域块输入灰度值低,那么图像区域块输出灰度值变化将变大,图像对比度将会增强;如果图像区域块输入灰度值高,那么图像区域块输出灰度值变化将变小,图像对比度将会降低。当γ>1时,如果图像区域块输入灰度值低,那么图像区域块输出灰度值变化将变小,图像对比度将会降低;如果图像区域块输入灰度值高,那么图像区域块输出灰度值变化将变大,图像对比度将会增强。

    $$ s = c{\left( {r + \varepsilon } \right)^\gamma } $$ (7)

    式中:cε为常量;γ为Gamma校正参数,该参数决定校正效果;r为输入灰度级;s为输出灰度级。

    图 4是对图 1(d)所示的水下图像运用不同对比度增强算法得到结果。

    图  4  不同直方图均衡算法的处理结果
    Figure  4.  Processing results of different histogram equalization algorithms

    图 4可以看出,图 4(a)是HE算法处理后的图像,易看出图像对比度增强过度,许多不重要的背景噪声同时也被增强,图像部分细节没有得到增强反而变得模糊不清;图 4(b)是AHE算法处理后的图像,易看出图像块与块之间没有做过渡处理并且出现图像背景噪声被过度增强;图 4(c)是CLAHE算法处理后的图像,易看出图像整体对比度得到了改善,背景噪声没有出现增强过度,但是图像局部对比度增强不足,部分细节不清晰;图 4(d)是改进的CLAHE算法处理后的图像,该算法有效地增强了图像整体对比度的同时也增强了图像局部对比度。

    图像融合通常的做法就是对不同图像赋予不同的值,然后通过叠加得到最终的结果图,但是这种做法往往会出现图像细节不清晰,图像出现重影晕环。为了解决这个问题,本文采用多尺度图像金字塔来融合图像,多尺度图像融合指的是图像在不同尺度下进行融合,通常情况下在单一尺度很难获取图像特征然而在另外一种尺度下就很容易获取,为了极大可能地保留图像结构特征,采用多尺度图像融合是一种较好的方式之一。

    单一的图像权重[15]不能完整地反映图像各个基本特征。因此,要想完整地反映图像各个基本特征需要融合多个图像权重,本文选取了拉普拉斯对比度权重、亮度权重、饱和度权重、显著性权重。

    拉普拉斯对比度权重可以清楚地显示出图像的边缘特征信息,通过使用拉普拉斯滤波器可以得到图像的全局对比度,这样可以保证图像的边缘和纹理具有较高的值。亮度权重负责为具有良好可见性的像素分配高值,该权重图是通过观察输入的R、G、B三通道与亮度通道L(给定位置的像素强度的平均值)之间的偏差来计算;显著性权重为了突出显示水下图像具有更高显著性的区域,可以通过输入的平均值减去其高斯平滑后得到结果。饱和度权重用于调整图像中的饱和区域,以获得饱和度均匀的融合图像。归一化权重是对上述权重进行归一化处理。

    图 5分别是颜色校正图像,颜色校正图像的拉普拉斯对比度、亮度、饱和度、显著性权重图以及归一化权重图。图 6分别是对比度增强图像,对比度增强图像的拉普拉斯对比度、亮度、饱和度、显著性权重图以及归一化权重图。

    图  5  颜色增强图像的权重图
    Figure  5.  Weight diagram of color enhanced images
    图  6  对比度增强图像的权重图
    Figure  6.  Weight diagram of contrast enhanced image

    图像金字塔技术是以不同角度展示图像细节的一种方式,高斯图像金字塔和拉普拉斯图像金字塔是最常见的图像金字塔技术,通常会结合这两种技术综合使用。对颜色校正图像和对比度增强图像的归一化权重图进行高斯金字塔分解,得到不同尺度的权重图;对颜色校正图像和对比度增强图像采用拉普拉斯金字塔分解,得到不同尺度的图像,最后将不同尺度的图像进行重建,得到最终的增强图。

    高斯图像金字塔可以保持图像的结构纹理信息,首先会对图像进行高斯滤波并且进行连续下采样,从而得到多种分辨率的图像。

    $$ \begin{gathered} {G_l}(i, j) = \sum\limits_{m = - 2}^2 {\sum\limits_{n = - 2}^2 {\omega (m, n){G_{l - 1}}(2i + m, 2j + n)} } \hfill \\ (1 \leqslant L \leqslant N, 1 \leqslant i \leqslant {R_L}, 1 \leqslant j \leqslant {C_L}) \hfill \\ \end{gathered} $$ (8)

    式中:N表示图像金字塔不同的层数;RL, CL表示第L层输入图像的行和列;ω(m, n)表示高斯核函数。

    拉普拉斯金字塔是用来重新构造出一幅图像,通过高斯金字塔得到的不同分辨率的图像,然后将每一层与上一层进行作差,同时进行上采样并且做高斯卷积,最终会得到不同的差值图像,通常称这些差值图像为拉普拉斯图像金字塔。

    $$ {L_l} = {K_l} - {\text{Up}}({\text{Down}}({K_l})) $$ (9)

    式中:Kl为原始输入图像;Ll为拉普拉斯金字塔分解图像;Up, Down分别为向上采样,向下采样。

    多尺度金字塔融合计算公式为:

    $$ \begin{gathered} {F_l}(x) = \sum\limits_k^{} {{G_l}[{{\overline W }_k}(x)]{L_l}[{I_k}(x)]} \hfill \\ F(x) = \sum\limits_l {{F_l}(x){ \uparrow ^d}} \hfill \\ \end{gathered} $$ (10)

    式中:l为金字塔的不同层数;k为输入图像金字塔的索引;Gl为高斯金字塔的分解;L为拉普拉斯金字塔的分解;${\bar W_k}$表示权重值归一化;Ik表示输入图像;Fl(x)为多尺度融合图像;F(x)为最后的融合结果;↑d表示该过程采用上采样方式。

    本文针对水下图像颜色衰退严重、对比度低及细节特征模糊等问题,提出一种改进的MSRCR与CLAHE多尺度融合的图像增强算法。图 7为多尺度图像融合的原理图及最终效果图,其中图 7(a)为水下图像经过颜色校正和对比度校正后的高斯金字塔图像和拉普拉斯图像,图 7(b)为水下图像经过颜色校正和对比度校正多尺度融合后的图像。为图 8为本文算法流程图,该算法首先将采集到的水下图像运用带导向滤波的MSRCR算法进行颜色校正;同时将颜色校正后的图像运用带有Gamma校正的CLAHE算法增强图像对比度;最后对经过颜色校正和对比度增强的水下图像进行多尺度图像融合得到最终水下增强图像。

    图  7  图像多尺度融合
    Figure  7.  Image multi-scale fusion and reconstruction
    图  8  本文算法流程
    Figure  8.  Algorithm flow chart of this paper

    实验的硬件系统为CPU i7-10875H,16GB DDR4;软件仿真环境是Matlab2016a,Win10操作系统。为了求证本文算法的可行性,将本文算法和文献[3]、文献[7]、文献[13]、文献[16]的算法进行对比,同时从主观和客观方面进行对比分析。

    本文实验选择10种不同水下环境下的图像进行对比仿真实验,处理结果如图 9所示。

    图  9  10种不同图像增强算法处理结果
    Figure  9.  Results of ten different image enhancement algorithms

    图 9中可以看出,文献[3]算法整体上对图像细节清晰度和对比度有一定的提升,但是没有解决水下图像颜色衰退的问题;文献[7]算法增强后的水下图像颜色校正明显,但是对于偏蓝色的水下场景并没有很好的校正,并且图像对比度低,图像细节模糊;文献[13]算法基本解决了水下图像颜色衰退的问题,图像细节和对比度同时也得到了提升,但是对于偏蓝色的水下场景颜色校正效果差(如Picture 10);文献[16]算法整体上图像对比度提升明显,图像细节较为清晰,但是颜色校正效果稍显不足(如Picture 2,Picture 4,Picture 8);本文算法整体上解决了不同水下环境的颜色衰退问题,对比度大幅度的提高,图像局部细节清晰明显,符合自然光照下的图像。

    本文采用3种性能指标来评估水下图像质量,即PSNR、SSIM和UIQE[17-18]。PSNR是基于对应像素点间的误差计算,主要计算最大值信号与背景噪声之间的比值,其数值越大则表示失真越小,其计算公式为:

    $$ {\text{MSE}} = \frac{1}{{H*W}}\sum\limits_{i = 1}^H {\sum\limits_{j = 1}^W {(X(i, j)} - Y(i, j){)^2}} $$
    $$ {\text{PSNR}} = 10\lg (\frac{{{{({2^n} - 1)}^2}}}{{{\text{MSE}}}}) $$ (11)

    式中:MSE表示图像的均方误差;HW表示图像的宽,高;n表示图像像素的比特数。

    SSIM是衡量两幅图像相似度的指标,其计算公式为:

    $$ {\text{SSIM}} = \frac{{(2{x_1}{x_2} + {C_1})(2{y_{1, 2}} + {C_2})}}{{({x_1}^2 + {x_2}^2 + {C_1})({y_1}^2 + {y_2}^2 + {C_2})}} $$ (12)

    式中:x1y1表示输入图像的均值,标准差;y1y2表示增强后图像的均值,标准差;y1, 2表示输入图像和增强后图像的协方差;C1C2为常数。SSIM数值越大表示输入原图的结构损失越小。

    UIQE是专门用来评价水下图像质量的指标,通常对评价颜色保真度、对比度、清晰度3个分量根据水下环境微调不同的权重参数,3个权重参数的确定需要通过多元的线性回归计算,最后线性相加不同的分量得出最终指标。

    $$ {\text{UIQE}} = {c_1}*\alpha + {c_2}*\beta + {c_3}*\chi $$ (13)

    式中:c1c2c3是不同分量的权重;α表示颜色保真度的测量指标;β表示对比度测量指标;χ表示清晰度的测量指标。

    上述实验的客观评价数据如表 1~表 3

    表  1  不同算法PSNR性能比较
    Table  1.  PSNR performance comparison of different algorithms
    PNSR Original Reference[3] Reference[7] Reference[13] Reference[16] Ours
    Picture 1 - 13.8014 14.2261 16.3929 21.0436 24.2896
    Picture 2 - 6.2876 6.7461 6.2519 14.0142 18.9873
    Picture 3 - 15.9585 12.5442 13.0328 20.9045 22.3212
    Picture 4 - 7.3254 7.9521 8.1265 13.2158 19.9914
    Picture 5 - 12.9871 14.8561 15.8516 17.3258 20.5563
    Picture 6 - 15.6243 15.9985 16.2546 18.2319 24.7963
    Picture 7 - 11.8274 13.2873 14.7931 19.2291 19.9639
    Picture 8 - 10.2034 11.2544 15.2698 16.3245 19.3312
    Picture 9 - 14.5758 15.9152 18.3223 20.5513 24.3698
    Picture10 - 11.4522 12.3756 13.4851 16.6334 19.3497
    下载: 导出CSV 
    | 显示表格
    表  2  不同算法SSIM性能比较
    Table  2.  Performance comparison of different SSIM algorithms
    SSIM Original Reference[3] Reference[7] Reference[13] Reference[16] Ours
    Picture 1 - 0.5609+ 0.5943 0.8321 0.8384 0.9611
    Picture 2 - 0.5223 0.5081 0.6869 0.8612 0.8874
    Picture 3 - 0.6186 0.7926 0.8031 0.8299 0.9212
    Picture 4 - 0.5743 0.5178 0.8163 0.8752 0.9649
    Picture 5 - 0.7121 0.7963 0.8263 0.8998 0.9088
    Picture 6 - 0.6933 0.7432 0.7966 0.8364 0.8997
    Picture 7 - 0.6074 0.5927 0.6988 0.7411 0.8796
    Picture 8 - 0.5871 0.5988 0.6355 0.7843 0.8894
    Picture 9 - 0.6121 0.6028 0.7123 0.7652 0.9126
    Picture 10 - 0.5386 0.6103 0.7521 0.8419 0.8696
    下载: 导出CSV 
    | 显示表格
    表  3  不同算法UIQE性能比较
    Table  3.  UIQE performance comparison of different algorithms
    UIQE Original Reference[3] Reference[7] Reference[13] Reference[16] Ours
    Picture 1 2.6449 4.9242 4.6436 5.0271 3.6167 5.2238
    Picture 2 1.7252 4.0814 0.2696 3.9252 2.1831 4.9121
    Picture 3 1.9542 3.0251 1.3447 3.5738 2.2406 4.4633
    Picture 4 1.5241 4.5296 1.0328 4.2153 3.6574 5.9685
    Picture 5 1.7551 3.1221 3.0217 3.9746 4.9962 6.2312
    Picture 6 1.9978 2.2173 2.1179 4.5023 4.8785 6.0178
    Picture 7 1.2212 1.3258 2.3647 4.2589 4.5565 6.9872
    Picture 8 2.0121 2.2365 3.4562 4.2199 4.8456 5.5463
    Picture 9 2.7853 2.8742 3.9893 4.5631 4.7987 6.2971
    Picture 10 0.6721 2.9255 3.2372 3.4801 1.5899 3.6943
    下载: 导出CSV 
    | 显示表格

    表 1中可以看出本文算法的PSNR基本上高于其他文献算法的值,除了Picture 3的PSNR数值略低于CLAHE算法,然而PSNR的数值并不能完全代表图像的质量,所以要结合图像的主观比较结果,从图中可以清晰看出Picture 3的颜色校正过度,红色分量过多出现颜色偏差,因此结合主观视觉来看,PSNR指标还是最好的。从表 2中可以看出,本文算法的SSIM数值和其他算法相比是最优的,说明本文算法保留了更多的图像的原始信息。从表 3中,本文算法的UIQE数值远远大于其他算法数值,其中,UIQE的权重系数c1=0.0351,c2=0.3128,c3=3.5792,UIQE数值越大表明图像的颜色保真度、清晰度、对比度越佳。

    主观上,从图 8中不同图像增强后的结果可以看出,本文算法可以有效地解决不同环境下的水下图像共同存在的问题,呈现出优良的视觉效果;客观上,从表 1~3中可以看出本文算法的不同指标数值几乎是最优的。因此,本文算法可以从不同方向有效的增强水下图像。

    本文研究了水下图像增强几种具有代表性的算法。针对水下图像存在图像颜色衰退严重,对比度低,细节特征模糊等问题,提出了一种具有导向滤波的MSRCR算法,该算法解决了水下图像颜色衰退的问题同时又保留了图像边缘细节;提出了一种具有Gamma校正的CLAHE算法,该算法有效地增强了水下图像整体对比度的同时也增强了图像局部对比度;最后结合多尺度图像融合,将两种算法增强后的图像逐层提取融合,保留了大量的图像特征信息,最终增强后的水下图像有效地解决了图像颜色衰退严重,对比度低,细节特征模糊的问题。对比实验结果显示,本文算法在主客观方面优于其他几种经典的水下图像增强算法。

  • 图  1   不同工作模式碲镉汞器件能带示意图: (a) 传统非俄歇抑制型p-on-n; (b) 俄歇抑制型; (c) 深度俄歇抑制型; (d) 全耗尽型

    Figure  1.   Comparison of the operation of a conventional p-on-n HgCdTe diode (a) Auger-suppressed diode (b) Auger-suppressed diode with current below Rule 07 (c) and fully-depleted P-ν-N diode at the radiative limit (d)

    图  2   排斥结电子(实线)和空穴(虚线)浓度分布

    Figure  2.   Electron concentration (solid) and hole concentration (dashed) for a n+ν excluding structure

    图  3   不同浓度下实现碲镉汞中波5 μm吸收层全耗尽所需偏压

    注:中间插图为特定掺杂浓度下实现全耗尽需要的偏压

    Figure  3.   Calculated reverse voltage versus doping concentration required to deplete a 5 μm-thick MWIR HgCdTe absorber.

    Inset: absorber depletion thickness versus reverse bias and selected doping concentration

    图  4   截止波长10 μm的俄歇抑制p-on-n探测器暗电流密度随温度变化曲线

    Figure  4.   Auger-suppressed dark current density for a 10 μm cutoffdetector versus temperature and doping

    图  5   不同组分下Law 19与Rule 07计算得到暗电流密度随温度变化曲线

    Figure  5.   Calculated current density versus temperature using Law 19 and Rule 07

    图  6   全耗尽型器件暗电流与其他体系探测器暗电流对比

    Figure  6.   Calculated current density of fully depleted device versus 1/(λcT) products

    图  7   国内主要研究机构报道高温碲镉汞器件性能

    Figure  7.   NETD versus temperature reported by major domestic reserch institutions

    表  1   国外主流公司碲镉汞HOT探测器产品[27-30]

    Table  1   High operating temperature IRFPAS of MCT from foreign companies

    Company Lynred(Sofradir) AIM Selex ES LEONARDO- DRS
    Product GALATEA MW HiPIR-Engine Firefly Camera ZAFIRO640® MICRO
    Array format 640×512 1024×768 640×512 640×480
    Tech route p-on-n p-on-n P+/ν(π)/N+ P+/P-(N-)/N+
    Detector pitch/μm 15 10 16 12
    Spectral response/μm 3.6~4.2 3.4~4.8 3.7~4.95 3.4~4.8
    Operating temperature/K 150 160 160 160
    Well capcity/Me- ~2.3 ~4 ~7 ~7.7
    Weight/g 230 360 550 272
    Power steady state/W ~2.7@20℃ ~4@20℃ ~5 ~5@23℃
    F# 4/5.5 2.2/4 4 3.25/4
    Frame rate/Hz 60 50/60 60 30/60
    NETD/mK ~35(300K) ~20(300K) 25 ~25
    Operability >99.5% >99% - 99.5%
    Cooldown time/mins ~3@20℃ ~3@20℃ - 2.5@23℃
    下载: 导出CSV
  • [1] 褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.

    CHU Junhao. Narrow-gap semiconductor physics[M]. Beijing: Science Press, 2005.

    [2] 杨健荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.

    [3]

    Rogalski Antoni, Martyniuk Piotr, Kopytko Małgorzata, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501. DOI: 10.3390/app11020501

    [4] 覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    [5]

    Reibel Yann, Taalat R, Brunner A, et al. Infrared SWAP detectors: pushing the limits[C]//Proc. of SPIE, 2015, 9451: 945110-1.

    [6]

    Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Proc. of SPIE, 2014, 9070: 90701D-1.

    [7]

    Eich D, WSchirmacher, SHanna, et al. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current[J]. Journal of Electronic Materials, 2017, 46(9): 5448-5457. DOI: 10.1007/s11664-017-5596-4

    [8]

    Rubaldo Laurent, Brunner Alexandre, Guinedor Pierre, et al. Recent advances in Sofradir IR on Ⅱ-Ⅵ photodetectors for HOT applications[C]//Quantum Sensing & Nano Electronics & Photonics Ⅷ, 2016: 9755.

    [9]

    Kopytko M, Jóźwikowski K, Martyniuk P, et al. Status of HgCdTe barrier infrared detectors grown by MOCVD in military university of technology[J]. Journal of Electronic Materials, 2016, 45(9): 4563-4573. DOI: 10.1007/s11664-016-4702-3

    [10]

    Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]//Proc. of SPIE, 1985: 0572.

    [11]

    Ashley T, Elliott C T, Harker AT. Non-equilibrium modes of operation for infrared detectors[J]. Infrared Physics, 1986, 26(5): 303-315. DOI: 10.1016/0020-0891(86)90008-4

    [12]

    Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595. DOI: 10.1007/s11664-016-4566-6

    [13]

    Ashley T, Elliott C T, White A M. Infrared detection using minority carrier exclusion[C]//Proc. of SPIE, 1986, 588: 62-68. .

    [14]

    Schuster J, DeWames R E, Wijewarnasuriya P S. Dark currents in a fully-depleted LWIR HgCdTe P-on-n heterojunction: analytical and numerical simulations[J]. Journal of Electronic Materials, 2017, 46(11): 6295-6305. DOI: 10.1007/s11664-017-5736-x

    [15]

    Rogalski Antoni, Kopytko Małgorzata, Martyniuk Piotr. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes[J]. Applied Optics, 2018, 57(18): D11-D19. DOI: 10.1364/AO.57.000D11

    [16]

    Donald Lee, Peter Dreiske, Jon Ellsworth, et al. Law 19: The ultimate photodiode performance metric[C]//Proc. of SPIE, 2018: 11407.

    [17]

    Tennant W E, Lee D, Zandian M, et al. MBE HgCdTe technology: A very general solution to IR detection, Descibrdby'Rule 07', a very convenient heuristic[J]. Electron. Mater. 2008, 37: 1406-1410. DOI: 10.1007/s11664-008-0426-3

    [18]

    Tennant W E. "Rule 07" Revisited: Still a Good Heuristic Predictor of p/n HgCdTe Photodiode Performance[J]. Journal of Electronic Materials, 2010, 39(7): 1030-1035. DOI: 10.1007/s11664-010-1084-9

    [19]

    Jóźwikowska A, Ciupa R, Markowska O, et al. Enhanced numerical design of HgCdTe MWIR HOT P+ νN+ photodiodes[C]//2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2019: 85-86.

    [20]

    Vallone M, Goano M, Bertazzi F, et al. Constraints and performance trade-offs in Auger-suppressed HgCdTe focal plane arrays[J]. Applied Optics, 2020, 59(17): E1-E8. DOI: 10.1364/AO.385075

    [21]

    Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. DOI: 10.1007/s11664-006-0233-7

    [22]

    Pillans Luke, Baker Ian, McEwen R Kennedy. Ultra-low power HOT MCT grown by MOVPE for handheld applications[C]//Proc. of SPIE, 2014, 9070: 90701E-1.

    [23]

    Kinch M A, Schaake H F, Strong R L, et al. High operating temperature MWIR detectors[C]//Proc. of SPIE, 2010, 7660: 76602V-1.

    [24]

    Priyalal S Wijewarnasuriya, Emelie P Y, Arvind D'Souza, et al. Nonequilibrium operation of arsenic diffused long-wavelength infrared hgcdte photodiodes[J]. Journal of Electronic Materials, 2008, 37(9): 1283-1290. DOI: 10.1007/s11664-008-0455-y

    [25]

    Madejczyk P, Gawron W, Piotrowski A, et al. Improvement in performance of high-operating temperature HgCdTe photodiodes[J]. Infrared Physics and Technology, 2011, 54(3): 310-315. DOI: 10.1016/j.infrared.2010.12.036

    [26]

    Paul Jerram, James Beletic. Teledyne's high performance infrared detectors for space missions[C]//Proc. of SPIE, 2018, 11180: 111803D-1.

    [27]

    Péré-Laperne N, Berthoz J, Taalat R, et al. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology[C]//Proc. of SPIE, 2016, 9819: 545-557.

    [28]

    AIM Infrarot-Module GmbH. HiPIR-Engine HOT MCT 1024×768 10 μm Pitch IR Engine[M/OL][2019-03-09]. http://www.Aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/01_HotCube/2018_AIM_datenblatt_A4_HOT-MCT-1024_engl.pdf

    [29]

    Pillans L, Harmer J, Edwards T. Firefly: a HOT camera core for thermal imagers with enhanced functionality[C]//Proc. of SPIE, 2015, 9451: 270-280.

    [30]

    Shafer T, Torres-Valladolid R, Burford R, et al. High operating temperature (HOT) midwave infrared (MWIR) 6 µm pitch camera core performance and maturity[C]//Proc. of SPIE, 2022, 12107: 215-229.

    [31] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW Infrared Detector Using MCT Technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    [32] 陈慧卿, 史春伟, 胡尚正, 等. 中波碲镉汞p-on-n高温工作技术研究[J]. 激光与红外, 2020, 50(4): 435-438. DOI: 10.3969/j.issn.1001-5078.2020.04.009

    CHEN Huiqin, SHI Chunwei, HU Shangzheng, et al. Study on p-on-n technology of the MWIR HgCdTe fot HOT Work[J]. LASER & INFRARED, 2020, 50(4): 435-438. DOI: 10.3969/j.issn.1001-5078.2020.04.009

    [33] 刘伟华, 刘帆, 吴正虎, 等. 12μm像元间距1280×1024碲镉汞中波红外焦平面探测器的制备及性能研究[J]. 红外, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm

    LIU Weihua, LIU Fan, WU Zhenghu, et al. Study on Preparation and Performance of 1280×1024@12 μm HgCdTe MWIR Focal Plane Detectors[J]. Infrared, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm

    [34]

    Rogalski A, Martyniuk P. Midwavelength infrared nBn for HOT detectors[J]. Journal of Electronic Material, 2014, 43(8): 2963-2969. DOI: 10.1007/s11664-014-3161-y

    [35]

    David Z Ting, Alexander Soibel, Arezou Khoshakhlagh, et al. Theoretical analysis of nBn infrared photodetectors[J]. Opt. Eng., 2017, 56(9): 091606.

  • 期刊类型引用(18)

    1. 陶洋,谭浩,周立群. ULCF-Net:跨尺度结构与色彩融合的水下低照度图像增强算法. 激光与光电子学进展. 2025(02): 430-440 . 百度学术
    2. 闫建红,李佳欣. 基于改进的MSR和γ-CLAHE的骶髂关节CT图像增强算法. 现代信息科技. 2025(06): 126-129+134 . 百度学术
    3. 刘芸萌,龙永红,李欣. 基于轻量化神经网络的低照度图像增强算法. 湖南工业大学学报. 2025(04): 41-47 . 百度学术
    4. 梅杰,覃嘉锐,陈定方,陈昆. 基于视觉同时定位与地图构建的水下图像增强式视觉三维重建方法. 中国机械工程. 2024(02): 268-279 . 百度学术
    5. 高航,白晨博,贾强. 基于改进MSRCR的光伏板图像去雾方法研究. 长江信息通信. 2024(04): 138-141 . 百度学术
    6. 周辉奎,章立,胡素娟. 改进直方图匹配和自适应均衡的水下图像增强. 红外技术. 2024(05): 532-538 . 本站查看
    7. 弭永发,迟明善,张强,刘鹏杰,王天佑. 基于颜色校正与改进的CLAHE多尺度融合水下图像增强. 无线电工程. 2024(06): 1470-1480 . 百度学术
    8. 刘晓朋,张涛. 全局-局部注意力引导的红外图像恢复算法. 红外技术. 2024(07): 791-801 . 本站查看
    9. 段燕北,程航. 匹配变换和线性变换融合的水下图像增强. 实验室研究与探索. 2024(07): 23-27+182 . 百度学术
    10. 韩丽,王中训,陈玉杰,刘培学,王林霖. 基于NSST与PCNN的水下图像融合方法研究. 电子设计工程. 2024(20): 72-77 . 百度学术
    11. 何婧,邱欣欣,温强. 基于边缘检测的数字媒体深度交互式图像分割算法. 吉林大学学报(信息科学版). 2024(05): 952-958 . 百度学术
    12. 赵燕萍. 基于引导滤波技术的低照度图像细节增强处理算法. 现代计算机. 2024(17): 18-22 . 百度学术
    13. 肖海柳. 分段均匀重分布和对数校正的水下图像增强. 火力与指挥控制. 2024(10): 135-141+148 . 百度学术
    14. 黄绿娥,陈祥林,肖文祥,邓亚峰. 基于分级多尺度融合的河道水下图像增强. 机电工程技术. 2024(12): 35-40+100 . 百度学术
    15. 戴永东,李明江,王茂飞,蒋承伶,马洲俊. Swin Transformer的电网设备缺陷检测与识别研究. 西安工业大学学报. 2024(06): 813-822 . 百度学术
    16. 王子昱. 基于图像增强的低光弱人脸检测算法分析. 信息与电脑(理论版). 2023(16): 144-147 . 百度学术
    17. 王金刚,林森. 基于颜色校正及特征融合的海洋遗迹图像增强. 海洋测绘. 2023(06): 61-65 . 百度学术
    18. 张菲菲,肖玉玲,陈伟雄,刘正熙,彭明骏,张高菘,林叶. 面向移动终端的恶劣环境图像增强软件的设计与实现. 现代计算机. 2023(22): 108-112 . 百度学术

    其他类型引用(17)

图(7)  /  表(1)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  35
  • PDF下载量:  116
  • 被引次数: 35
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-04-10
  • 刊出日期:  2023-01-19

目录

/

返回文章
返回