留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HgCdTe多层异质结红外探测材料与器件研究进展

陈正超 唐利斌 郝群 王善力 庄继胜 孔金丞 左文彬 姬荣斌

陈正超, 唐利斌, 郝群, 王善力, 庄继胜, 孔金丞, 左文彬, 姬荣斌. HgCdTe多层异质结红外探测材料与器件研究进展[J]. 红外技术, 2022, 44(9): 889-903.
引用本文: 陈正超, 唐利斌, 郝群, 王善力, 庄继胜, 孔金丞, 左文彬, 姬荣斌. HgCdTe多层异质结红外探测材料与器件研究进展[J]. 红外技术, 2022, 44(9): 889-903.
CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903.
Citation: CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903.

HgCdTe多层异质结红外探测材料与器件研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    陈正超(1987-),男,博士研究生,研究方向为光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

    郝群(1968-),女,教授,博士生导师,主要从事光学精密测试与计量。E-mail: qhao@bit.edu.cn

  • 中图分类号: TN304.054

Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction

  • 摘要: HgCdTe多层异质结技术是未来主流红外探测器发展的重要技术方向,在高工作温度、双/多色和雪崩光电管等高性能红外探测器中扮演着重要的角色。近年来基于多层异质结构的HgCdTe高工作温度红外探测器得到了快速发展,尤其是以势垒阻挡型和非平衡工作P+-π(ν)-N+结构为主的器件受到了广泛的研究。本文系统介绍了势垒阻挡型和非平衡工作P+-π(ν)-N+结构HgCdTe红外探测器的暗电流抑制机理,分析了制约两种器件结构发展的关键问题,并对国内外的研究进展进行了综述。对多层异质结构HgCdTe红外探测器的发展进行了总结与展望。
  • 图  1  单极势垒型红外探测器:(a)~(e)分别为nBn器件的能带结构[28]、Arrhenius曲线特性[28]、暗电流抑制特性[30]、体能带结构与表面能带结构对比[31]和表面漏电流通道的阻挡[31];(f) nBn焦平面器件阵列结构[32]

    Figure  1.  Unipolar barrier infrared detector: (a)-(e) are the band structure[28], Arrhenius curve characteristics[28], dark current suppression characteristics[30], comparison of bulk band structure and surface band structure[31], and blocking of surface leakage current channel of nBn device[31], respectively; (f) nBn focal plane array structure[32]

    图  2  HgCdTe势垒型探测器:(a)和(b)分别为nBn探测器的能带结构和暗电流的Arrhenius曲线[39-40];(c)和(d)分别为互补势垒探测器NBνN的能带结构和暗电流的Arrhenius曲线[41];(e)和(f)分别为p型掺杂势垒的能带结构和J-V特性曲线[48]

    Figure  2.  HgCdTe barrier detector: (a) and (b) are the band structure and Arrhenius curve of dark current of nBn detector, respectively[39-40]; (c) and (d) are the band structure and the Arrhenius curve of dark current of the complementary barrier detector NBνN, respectively[41]; (e) and (f) are the band structure and J-V characteristic curves of p-type doping barrier, respectively[48]

    图  3  HgCdTe势垒型探测器降低ΔEv的方法:(a)和(b)分别为HgTe/CdTe能带对准示意图和超晶格势垒能带结构图[55];(c)和(d)分别为势垒层两端的x组分梯度和n型/p型掺杂梯度[56];(e)和(f)分别为势垒层两端δ掺杂调控结构和能带结构[57]

    Figure  3.  The solutions of reduce ΔEv of HgCdTe barrier detector: (a) and (b) are HgT/CdTe band alignment diagram and superlattice barrier band diagram, respectively[55]; (c) and (d) are Cd molar fraction gradient and acceptor/donor doping gradient at both ends of the barrier layer, respectively[56]; (e) and (f) are δ-doping regulatory structures and band structures at both ends of the barrier layer, respectively[57]

    图  4  HgCdTe P+-π-N+单元红外探测器:(a)和(b)为非平衡工作器件结构及暗电流曲线[64];(c)-(f)分别为零偏及反偏时的能带结构[71]、反偏时的频率响应特性[70]、多层异质单元器件结构和器件封装形式[52]

    Figure  4.  HgCdTe P+-π-N+ prototype infrared detector: (a) and (b) are the structure and dark current curve of non-equilibrium operating device; (c)-(f) are the band structures with and without reverse bias[70], the frequency response characteristics with reverse bias[70], the structure and packaging form of multilayer heterojunction prototype devices[52], respectively

    图  5  P/p(π)/N结构焦平面红外探测器:(a)和(b)分别为P+-p-N+探测器的像元结构[17]和掺杂以及组分变化曲线[82];(c)-(f)分别为P+-p-N+焦平面探测器的焦平面阵列结构[17]、NETD曲线[85]、210 K时的成像效果图[85]和探测器组件产品图[91]

    Figure  5.  Focal plane array infrared detectors with P/p(π)/N structure: (a) and (b) are the pixel structure[17], doping and composition change curves of P+-p-N+ detectors[82], respectively; (c)-(f) are FPAs structure[17], calculated and measured NETD[85], hawk image at 210 K[85] and component product of P+-p-N+ FPAs detector[91], respectively

    图  6  P-ν-N结构焦平面红外探测器:(a)和(b)分别为吸收层Auger抑制高于“07规则”和完全耗尽时的能带结构图[94];(c) P-ν-N焦平面结构及其特征[63];(d) ν吸收区的暗电流密度随着多子(电子)浓度降低而降低并直达BLIP[63];(e) ν吸收层掺杂水平对全耗尽时所需反向偏压的影响[13];(f)不同波长时全耗尽HgCdTe P-ν-N焦平面探测器工作温度的提升[97]

    Figure  6.  Focal plane infrared detector of P-ν-N structure: (a) and (b) are the band structures of absorption layer with Auger suppression higher than "07 rule" and complete depletion, respectively[94]; (c) P-ν-N focal plane array structure and its characteristics[63]; (d) The dark current density in the absorption region decreases with the decrease of the majority carrier (electron) concentration and reaches the background limit infrared performance[63]; (e) The effect of doping level of the absorption layer on required reverse bias voltage when full depletion[13]; (f) Increases of operating temperature of full depletion HgCdTe P-ν-N focal plane detector with different wavelength[97]

    图  7  势垒阻挡型和非平衡工作HgCdTe红外探测器的进展

    Figure  7.  Progresses in barrier detector and non-equilibrium operating HgCdTe infrared detectors

    表  1  势垒阻挡型HgCdTe红外探测器的结构及性能对比

    Table  1.   Comparisons of structure and performance of barrier blocking HgCdTe infrared detectors

    Device structure λcut-off/
    μm
    T/K Dark current
    Vbias=−0.2 V
    (A/cm2
    Other
    performance
    Research institution Year Ref.
    nBnn 5.7 77 −0.54@180 K and −0.8 V Qη=66%
    Vturn on=−0.5~−1.0 V
    UMich, USA 2011 [39]
    nBnnN 5.2 77 3.74×10-6@−0.5 V Vturn on=−0.2 V 2012 [41]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{n}\mathrm{N}}^{+} $ 3.6 230 (2~3)×10-4 Ri=2 A/W MUT/Vigo, Poland 2014 [47]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{p}\mathrm{N}}^{+} $
    $ {\mathrm{n}\mathrm{B}}_{\mathrm{p}}\mathrm{p}{\mathrm{N}}^{+} $ 3.6 230 (2~3)×10-2 D*=2.0×1010Jones MUT/Vigo, Poland 2015 [50]
    $ {\mathrm{n}\mathrm{B}}_{\mathrm{p}}\mathrm{n}{\mathrm{N}}^{+} $ (7~60)×10-2 D*=1.0×1010 Jones
    $ {{\mathrm{n}}^{+}\mathrm{B}}_{\mathrm{p}}\mathrm{p}{\mathrm{N}}^{+} $ (1~3)×10-1 D*=8.0×109 Jones
    $ {{\mathrm{n}}^{+}\mathrm{B}}_{\mathrm{p}}\mathrm{n}{\mathrm{N}}^{+} $ > 1.0 D*=1.0×109 Jones
    $ {\mathrm{P}\mathrm{B}}_{\mathrm{p}}\mathrm{\pi }{\mathrm{n}}^{+} $ 9.0 77 (3~4)×10-4 - MUDT, China 2016 [58]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{n}\mathrm{N}}^{+} $ 6.0 230 9×10-2 - MUT, Poland 2016 [26]
    $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{p}\mathrm{N}}^{+} $ 0.1 -
    $ {\mathrm{n}}^{+}{\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}\pi {\mathrm{N}}^{+} $ 9.0 230 (8~9)@77 K - MUT/Vigo, Poland 2016 [59]
    nBnn 7.5 180 ~3.0×10-4 D*=1.64×109 Jones SITP, CAS, China/MUT, Poland 2020 [60]
    下载: 导出CSV

    表  2  HgCdTe多层异质结快速响应单元红外探测器性能对比

    Table  2.   Comparisons of performances of HgCdTe multilayer heterojunction fast response infrared detectors

    Device structure λcut-off
    /μm
    T/K Dark current/(A/cm2) Other performances Year Ref.
    P-π-N 7.5 230 0.4-2.0@−0.8 V Ri=6 A/W 2013 [72]
    n+-p+-P+-π-N+ 10.6 230 0.052@−0.2 V - 2016 [77]
    n+-P+-π-N+ 10.6 230 0.1-0.2@−0.7 V - 2017 [79]
    3-20@unbiased -
    n+-P+-p-N+ 10.6 230 0.1-0.2@−0.7 V - 2017 [70]
    4-8@unbiased -
    < 1@unbiased, optimal D*≈109 Jones
    n+-P+-p-N+ 10.6 300 ≤1@unbiased, RS+=0 Ω D*≈109 Jones 2017 [80]
    ~2.3@unbiased, RS+=5-10 Ω -
    N+-p-P+ 11.6 200 0.1-0.2@unbiased, NA/ni=10, tabs=1 μm Ri=~2 A/W 2018 [74]
    下载: 导出CSV

    表  3  HgCdTe多层异质结焦平面红外探测器性能对比

    Table  3.   Comparison of performances of HgCdTe multilayer heterojunction FPAs infrared detectors

    Device structure FPA
    format
    λcut-off/
    μm
    NETD/mK Other performance Research institution Year Ref.
    P+-P-π-N-N+ Variable mesa 320×256
    (30 μm)
    4@150 K 12@180 K - BAE/
    QinetiQ, UK
    2003 [84]
    Eagle 640×512
    (24 μm)
    9.6@80 K 20@80 K Operability
    ≥99%
    Selex, UK 2007 [82]
    P-p-N
    (Hawk)
    640×512
    (16 μm)
    8.0~9.4 28@80 K Operability =99.6% 2009 [88]
    P-p-N
    (Hawk)
    640×512
    (16 μm)
    5.5@80 K ~16@160 K
    ~32@185 K
    - 2011 [85]
    P-p-N
    (Test array)
    - - ~18@180 K - 2012 [90]
    P+-p-N+ (SuperHawk) 1280×1024
    (8 μm)
    - ~24@140 K
    ~28@ 150 K
    ~52@ 160 K
    Operability
    ≥99%
    2016 [92]
    P-ν-N 128×128
    1280×480
    640×512
    5.9@250 K
    10.2@78 K
    - MWIR HOT: 250 K
    LWIR HOT:
    160 K
    TIS, USA 2018
    2020
    [97]
    [94]
    下载: 导出CSV
  • [1] 宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd

    SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
    [2] 覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm
    [3] 覃钢, 夏菲, 周笑峰, 等. 基于nBn势垒阻挡结构的碲镉汞高温器件[J]. 红外技术, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005

    QIN Gang, XIA Fei, ZHOU Xiaofeng, et al. HgCdTe HOT infrared devices based on nBn barrier impeded structure[J]. Infrared Technology, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005
    [4] Akhavan N D, Jolley G, Umana-Membreno G A, et al. Performance modeling of bandgap engineered HgCdTe-based nBn infrared detectors[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3691-3698. doi:  10.1109/TED.2014.2359212
    [5] Klipstein P. "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, 2008, 6940: 69402U.
    [6] Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation[J]. Optical Engineering, 2015, 54(10): 105105. doi:  10.1117/1.OE.54.10.105105
    [7] Klipstein P, Klin O, Grossman S, et al. XBn barrier detectors for high operating temperatures[C]// Proc. of SPIE, 2010, 7608: 76081V.
    [8] Martyniuk P, Rogalski A. Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 211-220. doi:  10.2478/bpasts-2013-0020
    [9] YE Z H, CHEN Y Y, ZHANG P, et al. Modeling of LWIR nBn HgCdTe photodetector[C]// Proc. of SPIE, 2014, 9070: 90701L.
    [10] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版, 北京: 电子工业出版社, 2008.

    LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. 7th Edition, Beijing: Publishing House of Electronics Industry, 2009.
    [11] 王忆锋, 唐利斌. 碲镉汞近年来的研究进展[J]. 红外技术, 2009, 31(8): 435-442. doi:  10.3969/j.issn.1001-8891.2009.08.001

    WANG Yifeng, TANG Libin. Developments of mercury cadmium telluride in recent years[J]. Infrared Technology, 2009, 31(8): 435-442. doi:  10.3969/j.issn.1001-8891.2009.08.001
    [12] 丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    DING Ruijun, YANG Jianrong, HE Li, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm
    [13] Rogalski A, Kopytko M, Martyniuk P, et al. Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2020, 68(4): 845-855.
    [14] 杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012.
    [15] Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]// Proc. of SPIE, 2014, 9070: 90701D.
    [16] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
    [17] Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21(2): 1955.
    [18] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. doi:  10.1063/1.2360235
    [19] Klipstein P, Aronov D, Berkowicz E, et al. Reducing the cooling requirements of mid-wave IR detector arrays[J]. SPIE Newsroom, 2011, Doi: 10.1117/2.1201111.003919.
    [20] LEI L, LI L, YEH, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102. doi:  10.1063/1.4967915
    [21] Rabiee Golgir H, Ghandiparsi S, Devine E P, et al. Ultra-thin super absorbing photon trapping materials for high-performance infrared detection[C]// Proc. of SPIE, 2019, 11002: 110020T.
    [22] Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]// Proc. of SPIE, 1985, 572: 123.
    [23] Kopytko M, Kębłowski A, Gawron W, et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD[J]. Opto-Electronics Review, 2013, 21(4): 151109.
    [24] White A. Infrared Detectors [P]. U. S. : Patent 4, 679, 063, [1983-09-22].
    [25] Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same [P]. U. S. : Patent 7, 795, 640 B2, [2004-06-28].
    [26] Kopytko M, Rogalski A. HgCdTe barrier infrared detectors[J]. Progress in Quantum Electronics, 2016, 47(12): 1-18.
    [27] Martyniuk P, Kopytko M, Rogalski A. Barrier infrared detectors[J]. Opto-Electronics Review, 2014, 22(2): 1624.
    [28] Rogalski A, Martyniuk P. Mid-wavelength Infrared nBn for HOT Detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969.
    [29] Pedrazzani J R, Maimon S, Wicks G W. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors[J]. Applied Physics Letters, 2008, 44(25): 1487.
    [30] Savich G R, Pedrazzani J R, Sidor D E, et al. Benefits and limitations of unipolar barriers in infrared photodetectors[J]. Infrared Physics & Technology, 2013, 59: 152-155.
    [31] Sidor D E, Savich G R, Wicks G W. Surface leakage mechanisms in III-V infrared barrier detectors[J]. Journal of Electronic Materials, 2016, 45(9): 4663-4667.
    [32] Rogalski A. Next decade in infrared detectors[C]// Proc. of SPIE, 2017, 10433: 104330L.
    [33] Savich G R, Pedrazzani J R, Maimon S, et al. Use of epitaxial unipolar barriers to block surface leakage currents in photodetectors[J]. Physica Status Solidi C, 2010, 7(10): 2540-2543.
    [34] Kopytko M, Gomółka E, Michalczewski K, et al. Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors[J]. Semiconductor Science and Technology, 2018, 33(12): 125010.
    [35] DU X, Savich G R, Marozas B T, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design[J]. Journal of Electronic Materials, 2018, 47(2): 1038-1044.
    [36] Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014, 1(4): 41102.
    [37] Kopytko M, Jóźwikowski K. Numerical analysis of current–voltage characteristics of LWIR nBn and p-on-n HgCdTe photodetectors[J]. Journal of Electronic Materials, 2013, 42(11): 3211-3216.
    [38] 田震, 肖昕, 宋淑芳, 等. 低暗电流高温工作碲镉汞红外探测器制备技术[J]. 激光与红外, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm

    TIAN Zhen, XIAO Xin, SONG Shufang, et al. Low-dark current HOT infrared focal plane arrays using MCT technology[J]. Laser & Infrared, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm
    [39] Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 100(16): 161102.
    [40] Itsuno A M, Phillips J D, Velicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629.
    [41] Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBνN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2892.
    [42] Itsuno A M, Phillips J D, Gilmore A S, et al. Calculated performance of an auger-suppressed unipolar HgCdTe photodetector for high temperature operation[C]// Proc. of SPIE, 2011, 8155: 81550J.
    [43] Ting D Z-Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 23508.
    [44] Martyniuk P, Rogalski A. Modelling of MWIR HgCdTe complementary barrier HOT detector[J]. Solid-State Electronics, 2013, 80: 96-104.
    [45] Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319.
    [46] Kopytko M, Jozwikowski K. Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation[J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2278-2284.
    [47] Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier structures for HOT conditions[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3803-3807.
    [48] Kopytko M. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n-and p-type barriers[J]. Infrared Physics & Technology, 2014, 64(15): 47-55.
    [49] Klem J F, Kim J K, Cich M J, et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors[C]// Proc. of SPIE, 2010, 7608: 76081P.
    [50] Kopytko M, Kębłowski A, Gawron W, et al. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors[J]. Opto-Electronics Review, 2015, 23(2): 143-148.
    [51] Kopytko M, Kębłowski A, Gawron W, et al. MOCVD grown HgCdTe p+BnN+ barrier detector for MWIR HOT operation[C]// Proc. of SPIE, 2015, 9451: 945117.
    [52] Gawron W, Sobieski J, Manyk T, et al. MOCVD grown HgCdTe heterostructures for medium wave infrared detectors[J]. Coatings, 2021, 11(5): 611.
    [53] Uzgur F, Kocaman S. Barrier engineering for HgCdTe unipolar detectors on alternative substrates[J]. Infrared Physics & Technology, 2019, 97(3): 123-128.
    [54] Kopytko M, Jóźwikowski K, Rogalski A. Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode[J]. Solid-State Electronics, 2014, 100(1): 20-26.
    [55] Kopytko M, Wróbel J, Jóźwikowski K, et al. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166.
    [56] Akhavan N D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 105(12): 121110.
    [57] Akhavan N D, Umana-Membreno G A, Gu R, et al. Delta doping in HgCdTe-Based unipolar barrier photodetectors[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4340-4345.
    [58] QIU W C, JIANG T, CHENG X A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector[J]. Journal of Applied Physics, 2015, 118(12): 124504.
    [59] Kopytko M, Kębłowski A, Gawron W, et al. LWIR HgCdTe barrier photodiode with auger-suppression[J]. Semiconductor Science and Technology, 2016, 31(3): 35025.
    [60] HE J, WANG P, LI Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007.
    [61] 安东尼⋅罗格尔斯基. 红外探测器[M]. 2版, 北京: 机械工业出版社, 2014.

    Rogalski Antoni. Infrared Detectors [M]. Second Edition, Beijing: China Machine Press, 2014.
    [62] Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501.
    [63] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595.
    [64] Capper P, Garland J. Mercury Cadmium Telluride: Growth, Properties, and Applications[M]. Oxford: Wiley-Blackwell, 2011: 474-476.
    [65] Piotrowski A, Kłos K, Gawron W, et al. Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time[C]// Proc. of SPIE, 2007, 6542: 65421B.
    [66] Madejczyk P, Gawron W, Kębłowski A, et al. Response time study in unbiased long wavelength HgCdTe detectors[J]. Optical Engineering, 2017, 56(8): 087103.1-087103.8.
    [67] Pawluczyk J, Piotrowski J, Pusz W, et al. Complex behavior of time response of HgCdTe HOT photodetectors[J]. Journal of Electronic Materials, 2015, 44(9): 3163-3173.
    [68] Grodecki K, Martyniuk P, Kopytko M, et al. Fast response hot (1 1 1) HGCDTE MWIR Detectors[J]. Metrology and Measurement Systems, 2017, 24(3): 509-514.
    [69] Piotrowski A, Madejczyk P, Gawron W, et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007, 49(3): 173-182.
    [70] Kopytko M, Kębłowski A, Madejczyk P, et al. Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode[J]. Journal of Electronic Materials, 2017, 46(10): 6045-6055.
    [71] Madejczyk P, Gawron W, Martyniuk P, et al. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes[J]. Infrared Physics & Technology, 2017, 81(10): 276-281.
    [72] Kopytko M, Jóźwikowski K, Madejczyk P, et al. Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode[J]. Infrared Physics & Technology, 2013, 61: 162-166.
    [73] Piotrowski J F, Rogalski A. High-Operating-Temperature Infrared Photodetectors[M]. Bellingham, Washington: SPIE Press, 2007.
    [74] Kopytko M, Martyniuk P, Madejczyk P, et al. High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode[J]. Optical and Quantum Electronics, 2018, 50(2): 451. doi:  10.1007/s11082-018-1336-0
    [75] Madejczyk P, Gawron W, Kębłowski A, et al. Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures[J]. Journal of Electronic Materials, 2020, 49(11): 6908-6917. https://www.sciencedirect.com/science/article/pii/S0079672716000112
    [76] Martyniuk P, Gawron W, Stępień D, et al. Status of long-wave Auger suppressed HgCdTe detectors operating>200 K[J]. Opto-Electronics Review, 2015, 23(4): 151109. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-b54920e1-6686-4d03-a0e5-b252bcf63fc2
    [77] Martyniuk P, Kopytko M, Keblowski A, et al. Interface influence on the long-wave Auger suppressed multilayer N+π P+p+n+ HgCdTe HOT detector performance[J]. IEEE Sensors Journal, 2017, 17(3): 674-678.
    [78] Madejczyk P, Gawron W, Martyniuk P, et al. MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors[J]. Semiconductor Science and Technology, 2013, 28(10): 105017. doi:  10.2478/s11772-014-0186-y
    [79] Madejczyk P, Gawron W, Kębłowski A, et al. Response time improvement of LWIR HOT MCT detectors[C]// Proc. of SPIE, 2017, 10177: 1017719.
    [80] Martyniuk P, Kopytko M, Madejczyk P, et al. Theoretical simulation of a room temperature HgCdTe long-wave detector for fast response−operating under zero bias conditions[J]. Metrology and Measurement Systems, 2017, 24(4): 729-738.
    [81] Kopytko M, Sobieski J, Gawron W, et al. Minority carrier lifetime in HgCdTe (1 0 0) epilayers and their potential application to background radiation limited MWIR photodiodes[J]. Semiconductor Science and Technology, 2021, 36(5): 55003.
    [82] Hipwood L G, Jones C L, Walker D, et al. Affordable high-performance LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2007, 6542: 65420I.
    [83] Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2006, 6206: 620610.
    [84] Hipwood L G, Gordon N T, Jones C L, et al. 4 μm cut-off MOVPE Hg1-x CdxTe hybrid arrays with near BLIP performance at 180 K[C]// Proc. of SPIE, 2003, 5074: 185.
    [85] Knowles P, Hipwood L, Pillans L, et al. MCT FPAs at high operating temperatures[C]//Proc. of SPIE, 2011, 8185: 818505.
    [86] Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. doi:  10.1007/s11664-006-0233-7
    [87] Bowen G J, Blenkinsop I D, Catchpole R, et al. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors[C]// Proc. of SPIE, 2005, 5783: 392.
    [88] Hipwood L G, Jones C L, Price J, et al. LW Hawk: a 16 μm pitch full-TV LW IRFPA made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2009, 7298: 729820.
    [89] Abbott P, Thorne P M, Arthurs C P. Latest detector developments with HgCdTe grown by MOVPE on GaAs substrates[C]// Proc. of SPIE, 2011, 8012: 801236.
    [90] Knowles P, Hipwood L, Shorrocks N, et al. Mercury cadmium telluride detectors achieve high operating temperatures[J]. SPIE Newsroom, 2012. Doi: 10.1117/2.1201211.004535.
    [91] McEwen R K, Jeckells D, Bains S, et al. Developments in reduced pixel geometries with MOVPE grown MCT arrays[C]// Proc. of SPIE, 2015, 9451: 94512D.
    [92] Jeckells D, McEwen R K, Bains S, et al. Further developments of 8 μm pitch MCT pixels at Finmeccanica (formerly Selex ES)[C]// Proc. of SPIE, 2016, 9819: 98191X.
    [93] Kinch M A, Wan C-F, Schaake H, et al. Universal 1/f noise model for reverse biased diodes[J]. Applied Physics Letters, 2009, 94(19): 193508.
    [94] Lee D L, Dreiske P, Ellsworth J, et al. Law 19: the ultimate photodiode performance metric[C]// Proc. of SPIE, 2020, 11407: 114070X.
    [95] 孔金丞, 李艳辉, 杨春章, 等. 昆明物理研究所分子束外延碲镉汞薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm

    KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm
    [96] Knowles P, Hipwood L, Shorrocks N, et al. Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates[C]// Proc. of SPIE, 2012, 8541: 854108.
    [97] Jerram P, Beletic J. Teledyne's high performance infrared detectors for Space missions[C]// Proc. of SPIE, 2018, 11180: 111803D-2.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  41
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-08-30
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回