Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction
-
摘要: HgCdTe多层异质结技术是未来主流红外探测器发展的重要技术方向,在高工作温度、双/多色和雪崩光电管等高性能红外探测器中扮演着重要的角色。近年来基于多层异质结构的HgCdTe高工作温度红外探测器得到了快速发展,尤其是以势垒阻挡型和非平衡工作P+-π(ν)-N+结构为主的器件受到了广泛的研究。本文系统介绍了势垒阻挡型和非平衡工作P+-π(ν)-N+结构HgCdTe红外探测器的暗电流抑制机理,分析了制约两种器件结构发展的关键问题,并对国内外的研究进展进行了综述。对多层异质结构HgCdTe红外探测器的发展进行了总结与展望。Abstract: The HgCdTe multilayer heterojunction technology is an important direction for the development of mainstream infrared detectors in the future, playing an important role in high-performance infrared detectors, such as high operating temperature (HOT) detectors, dual/multicolor detectors, and avalanche photodiodes (APDs). Recently, HgCdTe HOT infrared detectors based on multilayer heterojunction technology have been developed, particularly devices based on the barrier and non-equilibrium operating P+-π(ν)-N+ structure have been widely studied. In this review, the dark current suppression mechanisms of P+-π(ν)-N+ structure HgCdTe infrared detectors with barrier and non-equilibrium operations were systematically introduced, the key problems that restrict the development of these two types of devices were analyzed, and the relevant research progress was reviewed. We summarized and assessed the prospects of the development of multilayer heterojunction HgCdTe infrared detectors.
-
Keywords:
- HgCdTe /
- multilayer heterojunction /
- barrier /
- non-equilibrium operating /
- focal plane arrays device
-
0. 引言
红外探测器一般分为两种:一种是在低温致冷系统协助下才能够正常工作的,它成本高、功耗大、寿命短;另一种是非制冷热红外探测器,它在成本、功耗、寿命、谱宽波段等方面更具有优势[1-2]。非制冷红外成像使用的核心部件是微测辐射热计,微测辐射热计的性能是由热敏材料的电阻温度系数等因素决定的。制备在室温附近具有高电阻温度系数即TCR(temperature coefficient of resistance),低方块电阻,并且没有相变弛豫的热敏薄膜是非制冷红外成像技术关键所在。目前有关这类热敏薄膜材料的研究报道有很多,VO2薄膜就是最常见的一种。
VO2薄膜是一种具有相变特性的功能薄膜,未掺杂的VO2薄膜在64℃具有从低温单斜相向高温四方相发生相变的行为[3]。这种奇特的相变行为很快引起了国内外众多科研人员的关注。从20世纪80年代开始到现在,有关VO2薄膜制备的报道有很多[4-11],其主要思路是将V2O5还原降价得到VO2。Wu J.[12]等人采用有机溶胶-凝胶法,将原料为摩尔比1:80:8的V2O5、C4H10O和C7H8O的混合溶液配制成溶胶,在云母片上旋涂后,再经过540℃的高温退火,制备出二氧化钒薄膜。易静[13]等利用水热法,将研磨好的V2O5和无水亚硫酸钠粉末,混合后放入烧杯内,加入蒸馏水、调节pH值和升温速率进行反应。24 h后,再将充分反应后的样品溶解于氢氧化钠溶液,进行过滤、洗涤烘干,最终制备出纯度为85.4%二氧化钒薄膜。唐振方[14]等利用射频磁控溅射设备对V2O5陶瓷烧结靶材进行溅射沉积镀膜,再经氩气气氛退火处理得到纯度94%的VO2薄膜。李金华[15]等采用离子束增强沉积的方法,将纯度为99.7%的V2O5粉末压成溅射靶。在使用氩离子束溅射沉积薄膜的同时,用氩氢混合束对沉积膜作高剂量离子注入,使沉积膜中V2O5的V-O键断裂,利用氢的还原性将+5价的钒还原为+4价,退火后获得室温热电阻温度系数约4%的VO2薄膜。由于未掺杂的VO2薄膜的相变温度高于室温,且存在相变驰豫,不能直接用作室温热敏薄膜。通过掺杂其他元素改变VO2的相变温度和相变驰豫温度的报道也有很多[16-17]。付学成[18]等将Ta2O5与V2O5粉末均匀混合压制成溅射靶,用离子束增强沉积的方法,在二氧化硅衬底上制备出掺Ta原子比为3%的二氧化钒薄膜,测得相变温度约48℃,相变驰豫温度约为1.5℃。谭源[19]等利用氮氧混合气体对钨钒金属靶进行共溅射的方法制备金属氧化物薄膜,并在常压下进行退火处理,结果表明掺钨原子比为1.4%的VO2薄膜的相变温度下降到31℃,相变驰豫温度约为2.5℃。关于能否利用具有还原性金属单质和V2O5进行共溅射,将V2O5还原制备出VO2的同时,实现掺杂改变相变温度和相变驰豫温度,国内外相关文献鲜有报道。
我们尝试在真空度高于1×10-4 Pa的条件下,通入高纯氩气,用共溅射的方法,对高纯金属镁靶和V2O5陶瓷靶进行溅射。利用Mg的还原性将+5价的钒降低为+4价制备VO2薄膜。通过调节加在两个靶材的功率,来调节薄膜中Mg和V的原子比。研究发现,当Mg和V的原子比为7:93时,XRD(X-ray diffraction)测试结果显示制备的薄膜晶粒主要成分是VO2,XPS(X-ray photoelectron spectroscopy)测试结果表明薄膜中的V以+4,+5价混合存在。当Mg和V的原子比为1:2时,XRD测试结果显示制备的薄膜晶粒主要成分变成了MgV2O5,同时XPS测试结果表明薄膜中的V仅以+4价存在。扫描电子显微镜照片显示,MgV2O5薄膜结晶状况良好。用霍尔效应仪测试MgV2O5薄膜电阻随温度的变化,结果显示:在20℃附近也有相变行为,电阻温度系数高达-8.6%/K,回线弛豫温度仅有0.3℃。我们分析了MgV2O5薄膜的特殊结构,并用相关的相变理论解释了薄膜在室温附近具有高TCR,较小的弛豫温度的原因。
1. 实验部分
1.1 实验设备
实验采用美国丹顿真空explore-14多靶磁控溅射沉积系统制备薄膜,如图 1所示。
五氧化钒靶安装在射频靶枪,高纯镁靶在直流靶枪。靶材中心距离基片台中心距离约15 cm,靶与基片台倾斜夹角约45°。溅射气源采用纯度为99.999%氩气,设备的极限真空为2×10-5 Pa。基片台为水冷控温,温度为22℃,旋转速度0~12转/min,转速可调。
1.2 测试设备与耗材
衬底选用清洗干净的3 in P型(100)单面抛光的单晶硅片,薄膜厚度测试选用KLA-TencorP7台阶仪,电阻温度系数测试选用MMR霍尔效应仪,薄膜成分检测选用德国Bruker公司ADVANCE Da Vinci多功能X射线衍射仪,元素化合价测试选用日本岛津-Kratos公司AXIS UltraDLDX射线光电子能谱仪,图像分析采用德国Zeiss Ultra Plus场发射扫描电子显微镜。
1.3 薄膜的制备
在本底真空度优于1×10-4 Pa的条件下,通入高纯氩气,设定工作气压为0.6 Pa,基片台转速设定为6转/min。预溅射功率为200 W,先将靶材分别预溅射5 min。再设定五氧化钒靶和高纯镁靶上的功率比值分别为300 W: 20 W,300 W: 30 W,300 W: 40 W,沉积时间为30 min,在3 in硅衬底上分3次制备薄膜。
2. 薄膜的测试
2.1 薄膜厚度和元素比例的测试
在共溅射的过程中保持五氧化钒靶的功率为300 W,将高纯镁靶上的功率由20 W增加到30 W、40 W。3次制备的薄膜厚度也有区别,台阶仪测试的结果表明:随着高纯镁靶上的功率由20 W,增加到30 W、40 W,沉积的薄膜厚度由355 nm增加到425 nm、578 nm。用EDS检测不同工艺条件制备薄膜中Mg和V的原子比,结果表明:镁靶上的功率为20 W时,沉积的薄膜中Mg和V的原子比为7:93,镁靶上的功率为30 W时,沉积的薄膜中Mg和V的原子比为17:83。当镁靶上的功率增加到40 W时,沉积的薄膜中Mg和V的原子比迅速增加到为1:2。
2.2 薄膜成分的测试
利用XRD检测不同工艺条件制备薄膜的物相,测试角度范围为15~75°,步幅大小为0.02°,测试结果如图 2显示,其中2θ为衍射角。Mg靶的溅射功率为20 W时,共溅射制备的薄膜3条谱峰分别对应于VO2(PDF#73-0514)的(211)、(151)、(024)晶向,没有发现V2O5和MgO晶粒的存在。同时利用XPS检测所制备薄膜中V和Mg化合价情况。测试结果采用高斯曲线进行拟合显示,薄膜中的V元素以+4和+5价共同存在,如图 3。Mg2p峰的窄程扫描图谱中显示:Mg2+结合能为50.75 eV。
Mg靶的功率增加到30 W和V2O5共溅射制备的薄膜,XRD测试结果如图 2显示。共溅射沉积的薄膜晶粒主要成分仍然是(211)和(151)晶向的VO2。根据标准卡片PDF#89-4728分析,(116)晶向的MgV2O5晶粒开始出现。当Mg靶的溅射功率增加到40 W时,在共溅射制备的薄膜中,VO2消失,(116)晶向的MgV2O5和(111)、(200)、(220)晶向的MgO(PDF#89-7746)为主要成分,结晶状况如图 4(a), 图 4(b)。
V2p、Mg1S的窄程扫描图谱结果显示,如图 5(a), 图 5(b)。V4+的结合能为516.24 eV,半高宽约3.08 eV,Mg2+的结合能为50.75 eV,Mg1S的结合能为1303.74 eV半高宽约1.92 eV。XPS测试结果显示V、Mg两种元素在薄膜中的原子比例约为2:1。
2.3 MgV2O5和V2O5薄膜的电学性能测试
为对比研究镁还原V2O5靶材制备的MgV2O5薄膜和V2O5薄膜电学性能不同。用银浆做好电极后,对利用共溅射法制备的MgV2O5薄膜和未被还原的V2O5薄膜进行电学性能对比测试,如图 6。
3. 结果分析和讨论
3.1 薄膜厚度和元素比例的测试结果分析
随着高纯镁靶上的功率由20 W,增加到30 W、40 W,沉积的薄膜厚度由355 nm增加到425 nm、578 nm。用EDS检测不同工艺条件制备薄膜中Mg和V的原子比,结果显示:当镁靶上的功率为20 W时,沉积的薄膜中Mg和V的原子比为7:93,当镁靶上的功率增加到40 W时,沉积的薄膜中Mg和V的原子比迅速增加到为1:2。这可能是由于在溅射金属镁时采用的功率过低,加在阴极上的电压也很低,只有小部分氩离子的能量大于镁的溅射阈值,造成镁的溅射产额比较低。当功率略有增加时,阴极上的电压升高,大部分氩离子的能量大于镁的溅射阈值,镁的溅射产额快速增加,引起薄膜的组分发生了变化,导致薄膜厚度也大幅度增加。
3.2 薄膜成分的测试结果分析
当Mg靶的溅射功率为20 W时,共溅射制备的薄膜中Mg2+结合能为50.75 eV。+2价的镁离子存在证明了镁原子可以将+5价的钒还原为+4价。V2p峰的窄程扫描图谱中V4+的结合能为516.26 eV,半高宽约0.81 eV;V5+的结合能为517.62 eV,半高宽约1.75 eV。通过高斯曲线对拟合过的V4+、V5+峰面积进行计算,可知在薄膜中V4+所占的比例约为14%,这和7%的Mg原子理论上可以将14%的V5+还原成V4+的结果非常吻合。
虽然XPS检测结果显示制备薄膜中有+5价V的存在,但XRD测试的结果中没有发现V2O5的存在。这可能是因为沉积的薄膜没有经过退火处理,V2O5以非晶状态存在造成的。根据Scherrer公式D=Kλ/(βcosθ),可以计算出VO2晶粒尺寸约5 nm。由于VO2晶粒比较小,且在薄膜中占有的比例低,SEM图像中很难发现它的存在。
当Mg靶的溅射功率增加到40 W时,XPS测试结果显示:V、Mg两种元素在薄膜中的原子比例为1:2。这与XRD测试得出的薄膜的主要成分是MgV2O5这一结果非常吻合。
3.3 MgV2O5和V2O5薄膜的电学性能测试结果分析与讨论
由图 6可以看出,未被还原的V2O5薄膜285~345 K的温度范围内电阻随温度的变化近似一条直线,无相变行为,升降温曲线是重合在一起的。由TCR计算公式${C_{T, R}} = \frac{1}{R} \times \frac{{\Delta R}}{{\Delta T}} $,R为293 K时薄膜电阻,可以计算得出,未被还原的V2O5薄膜在室温20℃时,TCR约为-1.4%/K。MgV2O5薄膜在285~345 K的温度范围内电阻由90 kΩ下降到1.4 kΩ,减少了约98%,在室温20℃附近显示出明显的相变行为,此温度下的TCR约为-8.6%/K,同时升降温回线的弛豫温度仅为0.3℃,这一结果比未掺杂VO2薄膜的弛豫温度3~5℃[20],低很多。
目前有关MgV2O5材料性质报道的论文极少,对于薄膜在室温附近具有相变行为且弛豫温度仅为0.3℃这一现象,可能是因为MgV2O5属于钒酸盐梯状化合物,其结构特点是典型的梯形结构,一个梯内的相互作用要比相邻梯间的相互作用大很多[21]。当薄膜温度从310~290 K进行变换时,沿c轴方向形成长和短的两种V-V键,从而使c参数有双重值,这种变化会在V3d导带费米能级上产生一个极小的能隙[22],这类相变属于一级相变,是造成MgV2O5薄膜在285~310 K的附近温度电阻曲线不重合的主要原因。
据文献[23]报道MgV2O5常温下是一种磁性材料。当薄膜吸收或释放热量发生相变时,不但吉布斯自由能和化学势能都相等,即G1=G2,μ1=μ2,化学势的一级偏微商也相等,只是化学势二级偏微商不相等。MgV2O5在室温附近发生一级相变的同时,可能伴随着二级相变,这类相变会影响材料的磁性,对材料的体积,焓无影响。由于二级相变的存在,弛豫温度要比未掺杂VO2薄膜的弛豫温度小很多。
另外,由负温度电阻系数热敏电阻器公式:
$$ {R_{25}} = {R_T}\exp {B_{\rm{n}}}\left( {\frac{1}{{298}} - \frac{1}{T}} \right) $$ 式中:R25为材料25℃的电阻值;RT为温度T时的实际电阻值;Bn为负电阻温度系数热敏电阻器材料物理特性的一个常数。由公式可以计算出,在温度为20℃时,材料常数Bn约为6700。这从另外一个方面说明了该材料在室温附近的绝对灵敏度非常高。
4. 结论
采用高纯金属镁靶和五氧化钒靶进行共溅射,利用镁原子的还原性,可以将+5价的钒降低为+4价,制备+4价钒的氧化物薄膜。当Mg和V的原子比为1:2时,共溅射制备的薄膜主要成分是MgV2O5。电学性能测试结果显示,MgV2O5薄膜在20℃附近有相变行为,电阻温度系数高达-8.6%/K,回线弛豫温度仅为0.3℃。这可能是由于MgV2O5特殊的梯形结构和磁性特性,在20℃发生二级相变的同时,伴随微弱的一级相变造成的。这为制备在室温条件下,高TCR、低相变弛豫温度的红外薄膜材料提供帮助。
-
图 1 单极势垒型红外探测器:(a)~(e)分别为nBn器件的能带结构[28]、Arrhenius曲线特性[28]、暗电流抑制特性[30]、体能带结构与表面能带结构对比[31]和表面漏电流通道的阻挡[31];(f) nBn焦平面器件阵列结构[32]
Figure 1. Unipolar barrier infrared detector: (a)-(e) are the band structure[28], Arrhenius curve characteristics[28], dark current suppression characteristics[30], comparison of bulk band structure and surface band structure[31], and blocking of surface leakage current channel of nBn device[31], respectively; (f) nBn focal plane array structure[32]
图 2 HgCdTe势垒型探测器:(a)和(b)分别为nBn探测器的能带结构和暗电流的Arrhenius曲线[39-40];(c)和(d)分别为互补势垒探测器NBνN的能带结构和暗电流的Arrhenius曲线[41];(e)和(f)分别为p型掺杂势垒的能带结构和J-V特性曲线[48]
Figure 2. HgCdTe barrier detector: (a) and (b) are the band structure and Arrhenius curve of dark current of nBn detector, respectively[39-40]; (c) and (d) are the band structure and the Arrhenius curve of dark current of the complementary barrier detector NBνN, respectively[41]; (e) and (f) are the band structure and J-V characteristic curves of p-type doping barrier, respectively[48]
图 3 HgCdTe势垒型探测器降低ΔEv的方法:(a)和(b)分别为HgTe/CdTe能带对准示意图和超晶格势垒能带结构图[55];(c)和(d)分别为势垒层两端的x组分梯度和n型/p型掺杂梯度[56];(e)和(f)分别为势垒层两端δ掺杂调控结构和能带结构[57]
Figure 3. The solutions of reduce ΔEv of HgCdTe barrier detector: (a) and (b) are HgT/CdTe band alignment diagram and superlattice barrier band diagram, respectively[55]; (c) and (d) are Cd molar fraction gradient and acceptor/donor doping gradient at both ends of the barrier layer, respectively[56]; (e) and (f) are δ-doping regulatory structures and band structures at both ends of the barrier layer, respectively[57]
图 4 HgCdTe P+-π-N+单元红外探测器:(a)和(b)为非平衡工作器件结构及暗电流曲线[64];(c)-(f)分别为零偏及反偏时的能带结构[71]、反偏时的频率响应特性[70]、多层异质单元器件结构和器件封装形式[52]
Figure 4. HgCdTe P+-π-N+ prototype infrared detector: (a) and (b) are the structure and dark current curve of non-equilibrium operating device; (c)-(f) are the band structures with and without reverse bias[70], the frequency response characteristics with reverse bias[70], the structure and packaging form of multilayer heterojunction prototype devices[52], respectively
图 5 P/p(π)/N结构焦平面红外探测器:(a)和(b)分别为P+-p-N+探测器的像元结构[17]和掺杂以及组分变化曲线[82];(c)-(f)分别为P+-p-N+焦平面探测器的焦平面阵列结构[17]、NETD曲线[85]、210 K时的成像效果图[85]和探测器组件产品图[91]
Figure 5. Focal plane array infrared detectors with P/p(π)/N structure: (a) and (b) are the pixel structure[17], doping and composition change curves of P+-p-N+ detectors[82], respectively; (c)-(f) are FPAs structure[17], calculated and measured NETD[85], hawk image at 210 K[85] and component product of P+-p-N+ FPAs detector[91], respectively
图 6 P-ν-N结构焦平面红外探测器:(a)和(b)分别为吸收层Auger抑制高于“07规则”和完全耗尽时的能带结构图[94];(c) P-ν-N焦平面结构及其特征[63];(d) ν吸收区的暗电流密度随着多子(电子)浓度降低而降低并直达BLIP[63];(e) ν吸收层掺杂水平对全耗尽时所需反向偏压的影响[13];(f)不同波长时全耗尽HgCdTe P-ν-N焦平面探测器工作温度的提升[97]
Figure 6. Focal plane infrared detector of P-ν-N structure: (a) and (b) are the band structures of absorption layer with Auger suppression higher than "07 rule" and complete depletion, respectively[94]; (c) P-ν-N focal plane array structure and its characteristics[63]; (d) The dark current density in the absorption region decreases with the decrease of the majority carrier (electron) concentration and reaches the background limit infrared performance[63]; (e) The effect of doping level of the absorption layer on required reverse bias voltage when full depletion[13]; (f) Increases of operating temperature of full depletion HgCdTe P-ν-N focal plane detector with different wavelength[97]
表 1 势垒阻挡型HgCdTe红外探测器的结构及性能对比
Table 1 Comparisons of structure and performance of barrier blocking HgCdTe infrared detectors
Device structure λcut-off/
μmT/K Dark current
Vbias=−0.2 V
(A/cm2)Other
performanceResearch institution Year Ref. nBnn 5.7 77 −0.54@180 K and −0.8 V Qη=66%
Vturn on=−0.5~−1.0 VUMich, USA 2011 [39] nBnnN 5.2 77 3.74×10-6@−0.5 V Vturn on=−0.2 V 2012 [41] $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{n}\mathrm{N}}^{+} $ 3.6 230 (2~3)×10-4 Ri=2 A/W MUT/Vigo, Poland 2014 [47] $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{p}\mathrm{N}}^{+} $ $ {\mathrm{n}\mathrm{B}}_{\mathrm{p}}\mathrm{p}{\mathrm{N}}^{+} $ 3.6 230 (2~3)×10-2 D*=2.0×1010Jones MUT/Vigo, Poland 2015 [50] $ {\mathrm{n}\mathrm{B}}_{\mathrm{p}}\mathrm{n}{\mathrm{N}}^{+} $ (7~60)×10-2 D*=1.0×1010 Jones $ {{\mathrm{n}}^{+}\mathrm{B}}_{\mathrm{p}}\mathrm{p}{\mathrm{N}}^{+} $ (1~3)×10-1 D*=8.0×109 Jones $ {{\mathrm{n}}^{+}\mathrm{B}}_{\mathrm{p}}\mathrm{n}{\mathrm{N}}^{+} $ > 1.0 D*=1.0×109 Jones $ {\mathrm{P}\mathrm{B}}_{\mathrm{p}}\mathrm{\pi }{\mathrm{n}}^{+} $ 9.0 77 (3~4)×10-4 - MUDT, China 2016 [58] $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{n}\mathrm{N}}^{+} $ 6.0 230 9×10-2 - MUT, Poland 2016 [26] $ {\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}{\mathrm{p}\mathrm{N}}^{+} $ 0.1 - $ {\mathrm{n}}^{+}{\mathrm{p}}^{+}{\mathrm{B}}_{\mathrm{p}}\pi {\mathrm{N}}^{+} $ 9.0 230 (8~9)@77 K - MUT/Vigo, Poland 2016 [59] nBnn 7.5 180 ~3.0×10-4 D*=1.64×109 Jones SITP, CAS, China/MUT, Poland 2020 [60] 表 2 HgCdTe多层异质结快速响应单元红外探测器性能对比
Table 2 Comparisons of performances of HgCdTe multilayer heterojunction fast response infrared detectors
Device structure λcut-off
/μmT/K Dark current/(A/cm2) Other performances Year Ref. P-π-N 7.5 230 0.4-2.0@−0.8 V Ri=6 A/W 2013 [72] n+-p+-P+-π-N+ 10.6 230 0.052@−0.2 V - 2016 [77] n+-P+-π-N+ 10.6 230 0.1-0.2@−0.7 V - 2017 [79] 3-20@unbiased - n+-P+-p-N+ 10.6 230 0.1-0.2@−0.7 V - 2017 [70] 4-8@unbiased - < 1@unbiased, optimal D*≈109 Jones n+-P+-p-N+ 10.6 300 ≤1@unbiased, RS+=0 Ω D*≈109 Jones 2017 [80] ~2.3@unbiased, RS+=5-10 Ω - N+-p-P+ 11.6 200 0.1-0.2@unbiased, NA/ni=10, tabs=1 μm Ri=~2 A/W 2018 [74] 表 3 HgCdTe多层异质结焦平面红外探测器性能对比
Table 3 Comparison of performances of HgCdTe multilayer heterojunction FPAs infrared detectors
Device structure FPA
formatλcut-off/
μmNETD/mK Other performance Research institution Year Ref. P+-P-π-N-N+ Variable mesa 320×256
(30 μm)4@150 K 12@180 K - BAE/
QinetiQ, UK2003 [84] Eagle 640×512
(24 μm)9.6@80 K 20@80 K Operability
≥99%Selex, UK 2007 [82] P-p-N
(Hawk)640×512
(16 μm)8.0~9.4 28@80 K Operability =99.6% 2009 [88] P-p-N
(Hawk)640×512
(16 μm)5.5@80 K ~16@160 K
~32@185 K- 2011 [85] P-p-N
(Test array)- - ~18@180 K - 2012 [90] P+-p-N+ (SuperHawk) 1280×1024
(8 μm)- ~24@140 K
~28@ 150 K
~52@ 160 KOperability
≥99%2016 [92] P-ν-N 128×128
1280×480
640×5125.9@250 K
10.2@78 K- MWIR HOT: 250 K
LWIR HOT:
160 KTIS, USA 2018
2020[97]
[94] -
[1] 宋林伟, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd SONG Linwei, KONG Jincheng, LI Dongsheng, et al. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. http://hwjs.nvir.cn/article/id/587d68b6-af54-476a-b0b8-5a5e4ef674fd
[2] 覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 20200328. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm
[3] 覃钢, 夏菲, 周笑峰, 等. 基于nBn势垒阻挡结构的碲镉汞高温器件[J]. 红外技术, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005 QIN Gang, XIA Fei, ZHOU Xiaofeng, et al. HgCdTe HOT infrared devices based on nBn barrier impeded structure[J]. Infrared Technology, 2018, 40(9): 853-862. http://hwjs.nvir.cn/article/id/hwjs201809005
[4] Akhavan N D, Jolley G, Umana-Membreno G A, et al. Performance modeling of bandgap engineered HgCdTe-based nBn infrared detectors[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3691-3698. DOI: 10.1109/TED.2014.2359212
[5] Klipstein P. "XBn" barrier photodetectors for high sensitivity and high operating temperature infrared sensors[C]//Proc. of SPIE, 2008, 6940: 69402U.
[6] Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation[J]. Optical Engineering, 2015, 54(10): 105105. DOI: 10.1117/1.OE.54.10.105105
[7] Klipstein P, Klin O, Grossman S, et al. XBn barrier detectors for high operating temperatures[C]// Proc. of SPIE, 2010, 7608: 76081V.
[8] Martyniuk P, Rogalski A. Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(1): 211-220. DOI: 10.2478/bpasts-2013-0020
[9] YE Z H, CHEN Y Y, ZHANG P, et al. Modeling of LWIR nBn HgCdTe photodetector[C]// Proc. of SPIE, 2014, 9070: 90701L.
[10] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版, 北京: 电子工业出版社, 2008. LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. 7th Edition, Beijing: Publishing House of Electronics Industry, 2009.
[11] 王忆锋, 唐利斌. 碲镉汞近年来的研究进展[J]. 红外技术, 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001 WANG Yifeng, TANG Libin. Developments of mercury cadmium telluride in recent years[J]. Infrared Technology, 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001
[12] 丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm DING Ruijun, YANG Jianrong, HE Li, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm
[13] Rogalski A, Kopytko M, Martyniuk P, et al. Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2020, 68(4): 845-855.
[14] 杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012. YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Defense Industry Press, 2012.
[15] Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]// Proc. of SPIE, 2014, 9070: 90701D.
[16] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002 ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
[17] Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 2013, 21(2): 1955.
[18] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. DOI: 10.1063/1.2360235
[19] Klipstein P, Aronov D, Berkowicz E, et al. Reducing the cooling requirements of mid-wave IR detector arrays[J]. SPIE Newsroom, 2011, Doi: 10.1117/2.1201111.003919.
[20] LEI L, LI L, YEH, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures[J]. Journal of Applied Physics, 2016, 120(19): 193102. DOI: 10.1063/1.4967915
[21] Rabiee Golgir H, Ghandiparsi S, Devine E P, et al. Ultra-thin super absorbing photon trapping materials for high-performance infrared detection[C]// Proc. of SPIE, 2019, 11002: 110020T.
[22] Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]// Proc. of SPIE, 1985, 572: 123.
[23] Kopytko M, Kębłowski A, Gawron W, et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD[J]. Opto-Electronics Review, 2013, 21(4): 151109.
[24] White A. Infrared Detectors [P]. U. S. : Patent 4, 679, 063, [1983-09-22].
[25] Klipstein P. Depletion-less Photodiode with Suppressed Dark Current and Method for Producing the Same [P]. U. S. : Patent 7, 795, 640 B2, [2004-06-28].
[26] Kopytko M, Rogalski A. HgCdTe barrier infrared detectors[J]. Progress in Quantum Electronics, 2016, 47(12): 1-18.
[27] Martyniuk P, Kopytko M, Rogalski A. Barrier infrared detectors[J]. Opto-Electronics Review, 2014, 22(2): 1624.
[28] Rogalski A, Martyniuk P. Mid-wavelength Infrared nBn for HOT Detectors[J]. Journal of Electronic Materials, 2014, 43(8): 2963-2969.
[29] Pedrazzani J R, Maimon S, Wicks G W. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors[J]. Applied Physics Letters, 2008, 44(25): 1487.
[30] Savich G R, Pedrazzani J R, Sidor D E, et al. Benefits and limitations of unipolar barriers in infrared photodetectors[J]. Infrared Physics & Technology, 2013, 59: 152-155.
[31] Sidor D E, Savich G R, Wicks G W. Surface leakage mechanisms in III-V infrared barrier detectors[J]. Journal of Electronic Materials, 2016, 45(9): 4663-4667.
[32] Rogalski A. Next decade in infrared detectors[C]// Proc. of SPIE, 2017, 10433: 104330L.
[33] Savich G R, Pedrazzani J R, Maimon S, et al. Use of epitaxial unipolar barriers to block surface leakage currents in photodetectors[J]. Physica Status Solidi C, 2010, 7(10): 2540-2543.
[34] Kopytko M, Gomółka E, Michalczewski K, et al. Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors[J]. Semiconductor Science and Technology, 2018, 33(12): 125010.
[35] DU X, Savich G R, Marozas B T, et al. Suppression of lateral diffusion and surface leakage currents in nBn photodetectors using an inverted design[J]. Journal of Electronic Materials, 2018, 47(2): 1038-1044.
[36] Martyniuk P, Antoszewski J, Martyniuk M, et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014, 1(4): 41102.
[37] Kopytko M, Jóźwikowski K. Numerical analysis of current–voltage characteristics of LWIR nBn and p-on-n HgCdTe photodetectors[J]. Journal of Electronic Materials, 2013, 42(11): 3211-3216.
[38] 田震, 肖昕, 宋淑芳, 等. 低暗电流高温工作碲镉汞红外探测器制备技术[J]. 激光与红外, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm TIAN Zhen, XIAO Xin, SONG Shufang, et al. Low-dark current HOT infrared focal plane arrays using MCT technology[J]. Laser & Infrared, 2019, 49(7): 861-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201907014.htm
[39] Itsuno A M, Phillips J D, Velicu S. Mid-wave infrared HgCdTe nBn photodetector[J]. Applied Physics Letters, 2012, 100(16): 161102.
[40] Itsuno A M, Phillips J D, Velicu S. Design and modeling of HgCdTe nBn detectors[J]. Journal of Electronic Materials, 2011, 40(8): 1624-1629.
[41] Itsuno A M, Phillips J D, Velicu S. Design of an auger-suppressed unipolar HgCdTe NBνN photodetector[J]. Journal of Electronic Materials, 2012, 41(10): 2886-2892.
[42] Itsuno A M, Phillips J D, Gilmore A S, et al. Calculated performance of an auger-suppressed unipolar HgCdTe photodetector for high temperature operation[C]// Proc. of SPIE, 2011, 8155: 81550J.
[43] Ting D Z-Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2): 23508.
[44] Martyniuk P, Rogalski A. Modelling of MWIR HgCdTe complementary barrier HOT detector[J]. Solid-State Electronics, 2013, 80: 96-104.
[45] Martyniuk P, Gawron W, Rogalski A. Theoretical modeling of HOT HgCdTe barrier detectors for the mid-wave infrared range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319.
[46] Kopytko M, Jozwikowski K. Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation[J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2278-2284.
[47] Kopytko M, Keblowski A, Gawron W, et al. MOCVD grown HgCdTe barrier structures for HOT conditions[J]. IEEE Transactions on Electron Devices, 2014, 61(11): 3803-3807.
[48] Kopytko M. Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n-and p-type barriers[J]. Infrared Physics & Technology, 2014, 64(15): 47-55.
[49] Klem J F, Kim J K, Cich M J, et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors[C]// Proc. of SPIE, 2010, 7608: 76081P.
[50] Kopytko M, Kębłowski A, Gawron W, et al. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors[J]. Opto-Electronics Review, 2015, 23(2): 143-148.
[51] Kopytko M, Kębłowski A, Gawron W, et al. MOCVD grown HgCdTe p+BnN+ barrier detector for MWIR HOT operation[C]// Proc. of SPIE, 2015, 9451: 945117.
[52] Gawron W, Sobieski J, Manyk T, et al. MOCVD grown HgCdTe heterostructures for medium wave infrared detectors[J]. Coatings, 2021, 11(5): 611.
[53] Uzgur F, Kocaman S. Barrier engineering for HgCdTe unipolar detectors on alternative substrates[J]. Infrared Physics & Technology, 2019, 97(3): 123-128.
[54] Kopytko M, Jóźwikowski K, Rogalski A. Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode[J]. Solid-State Electronics, 2014, 100(1): 20-26.
[55] Kopytko M, Wróbel J, Jóźwikowski K, et al. Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors[J]. Journal of Electronic Materials, 2015, 44(1): 158-166.
[56] Akhavan N D, Umana-Membreno G A, Jolley G, et al. A method of removing the valence band discontinuity in HgCdTe-based nBn detectors[J]. Applied Physics Letters, 2014, 105(12): 121110.
[57] Akhavan N D, Umana-Membreno G A, Gu R, et al. Delta doping in HgCdTe-Based unipolar barrier photodetectors[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4340-4345.
[58] QIU W C, JIANG T, CHENG X A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector[J]. Journal of Applied Physics, 2015, 118(12): 124504.
[59] Kopytko M, Kębłowski A, Gawron W, et al. LWIR HgCdTe barrier photodiode with auger-suppression[J]. Semiconductor Science and Technology, 2016, 31(3): 35025.
[60] HE J, WANG P, LI Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2001-2007.
[61] 安东尼⋅罗格尔斯基. 红外探测器[M]. 2版, 北京: 机械工业出版社, 2014. Rogalski Antoni. Infrared Detectors [M]. Second Edition, Beijing: China Machine Press, 2014.
[62] Rogalski A, Martyniuk P, Kopytko M, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501.
[63] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595.
[64] Capper P, Garland J. Mercury Cadmium Telluride: Growth, Properties, and Applications[M]. Oxford: Wiley-Blackwell, 2011: 474-476.
[65] Piotrowski A, Kłos K, Gawron W, et al. Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time[C]// Proc. of SPIE, 2007, 6542: 65421B.
[66] Madejczyk P, Gawron W, Kębłowski A, et al. Response time study in unbiased long wavelength HgCdTe detectors[J]. Optical Engineering, 2017, 56(8): 087103.1-087103.8.
[67] Pawluczyk J, Piotrowski J, Pusz W, et al. Complex behavior of time response of HgCdTe HOT photodetectors[J]. Journal of Electronic Materials, 2015, 44(9): 3163-3173.
[68] Grodecki K, Martyniuk P, Kopytko M, et al. Fast response hot (1 1 1) HGCDTE MWIR Detectors[J]. Metrology and Measurement Systems, 2017, 24(3): 509-514.
[69] Piotrowski A, Madejczyk P, Gawron W, et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007, 49(3): 173-182.
[70] Kopytko M, Kębłowski A, Madejczyk P, et al. Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode[J]. Journal of Electronic Materials, 2017, 46(10): 6045-6055.
[71] Madejczyk P, Gawron W, Martyniuk P, et al. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes[J]. Infrared Physics & Technology, 2017, 81(10): 276-281.
[72] Kopytko M, Jóźwikowski K, Madejczyk P, et al. Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode[J]. Infrared Physics & Technology, 2013, 61: 162-166.
[73] Piotrowski J F, Rogalski A. High-Operating-Temperature Infrared Photodetectors[M]. Bellingham, Washington: SPIE Press, 2007.
[74] Kopytko M, Martyniuk P, Madejczyk P, et al. High frequency response of LWIR HgCdTe photodiodes operated under zero-bias mode[J]. Optical and Quantum Electronics, 2018, 50(2): 451. DOI: 10.1007/s11082-018-1336-0
[75] Madejczyk P, Gawron W, Kębłowski A, et al. Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures[J]. Journal of Electronic Materials, 2020, 49(11): 6908-6917. https://www.sciencedirect.com/science/article/pii/S0079672716000112
[76] Martyniuk P, Gawron W, Stępień D, et al. Status of long-wave Auger suppressed HgCdTe detectors operating>200 K[J]. Opto-Electronics Review, 2015, 23(4): 151109. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-b54920e1-6686-4d03-a0e5-b252bcf63fc2
[77] Martyniuk P, Kopytko M, Keblowski A, et al. Interface influence on the long-wave Auger suppressed multilayer N+π P+p+n+ HgCdTe HOT detector performance[J]. IEEE Sensors Journal, 2017, 17(3): 674-678.
[78] Madejczyk P, Gawron W, Martyniuk P, et al. MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors[J]. Semiconductor Science and Technology, 2013, 28(10): 105017. DOI: 10.2478/s11772-014-0186-y
[79] Madejczyk P, Gawron W, Kębłowski A, et al. Response time improvement of LWIR HOT MCT detectors[C]// Proc. of SPIE, 2017, 10177: 1017719.
[80] Martyniuk P, Kopytko M, Madejczyk P, et al. Theoretical simulation of a room temperature HgCdTe long-wave detector for fast response−operating under zero bias conditions[J]. Metrology and Measurement Systems, 2017, 24(4): 729-738.
[81] Kopytko M, Sobieski J, Gawron W, et al. Minority carrier lifetime in HgCdTe (1 0 0) epilayers and their potential application to background radiation limited MWIR photodiodes[J]. Semiconductor Science and Technology, 2021, 36(5): 55003.
[82] Hipwood L G, Jones C L, Walker D, et al. Affordable high-performance LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2007, 6542: 65420I.
[83] Jones C L, Hipwood L G, Shaw C J, et al. High-performance MW and LW IRFPAs made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2006, 6206: 620610.
[84] Hipwood L G, Gordon N T, Jones C L, et al. 4 μm cut-off MOVPE Hg1-x CdxTe hybrid arrays with near BLIP performance at 180 K[C]// Proc. of SPIE, 2003, 5074: 185.
[85] Knowles P, Hipwood L, Pillans L, et al. MCT FPAs at high operating temperatures[C]//Proc. of SPIE, 2011, 8185: 818505.
[86] Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. DOI: 10.1007/s11664-006-0233-7
[87] Bowen G J, Blenkinsop I D, Catchpole R, et al. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors[C]// Proc. of SPIE, 2005, 5783: 392.
[88] Hipwood L G, Jones C L, Price J, et al. LW Hawk: a 16 μm pitch full-TV LW IRFPA made from HgCdTe grown by MOVPE[C]// Proc. of SPIE, 2009, 7298: 729820.
[89] Abbott P, Thorne P M, Arthurs C P. Latest detector developments with HgCdTe grown by MOVPE on GaAs substrates[C]// Proc. of SPIE, 2011, 8012: 801236.
[90] Knowles P, Hipwood L, Shorrocks N, et al. Mercury cadmium telluride detectors achieve high operating temperatures[J]. SPIE Newsroom, 2012. Doi: 10.1117/2.1201211.004535.
[91] McEwen R K, Jeckells D, Bains S, et al. Developments in reduced pixel geometries with MOVPE grown MCT arrays[C]// Proc. of SPIE, 2015, 9451: 94512D.
[92] Jeckells D, McEwen R K, Bains S, et al. Further developments of 8 μm pitch MCT pixels at Finmeccanica (formerly Selex ES)[C]// Proc. of SPIE, 2016, 9819: 98191X.
[93] Kinch M A, Wan C-F, Schaake H, et al. Universal 1/f noise model for reverse biased diodes[J]. Applied Physics Letters, 2009, 94(19): 193508.
[94] Lee D L, Dreiske P, Ellsworth J, et al. Law 19: the ultimate photodiode performance metric[C]// Proc. of SPIE, 2020, 11407: 114070X.
[95] 孔金丞, 李艳辉, 杨春章, 等. 昆明物理研究所分子束外延碲镉汞薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm KONG Jincheng, LI Yanhui, YANG Chunzhang, et al. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics[J]. Journal of Synthetic Crystals, 2020, 49(12): 2221-2229. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT202012002.htm
[96] Knowles P, Hipwood L, Shorrocks N, et al. Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates[C]// Proc. of SPIE, 2012, 8541: 854108.
[97] Jerram P, Beletic J. Teledyne's high performance infrared detectors for Space missions[C]// Proc. of SPIE, 2018, 11180: 111803D-2.
-
期刊类型引用(1)
1. 付学成,徐锦滨,乌李瑛,付刘成,王英. 溅射工艺时间对不同靶材溅射速率的影响. 实验室研究与探索. 2024(09): 37-40 . 百度学术
其他类型引用(0)