Citation: | WANG Zhen, LIU Lei. Infrared Image Segmentation of Power Equipments Based on Improved Watershed Algorithm[J]. Infrared Technology , 2025, 47(4): 484-492. |
When the watershed algorithm is applied to the infrared image segmentation of power equipment, the presence of image noise and gray-level variations caused by complex surface textures can lead to over-segmentation. To address this issue, an improved marked watershed algorithm combined with a K-means algorithm is proposed. First, the infrared image is preprocessed to suppress noise, and then combined with the gray-level information in the image. The equipment is extracted using the K-means clustering algorithm, and the resulting image is morphologically marked using an extended extremum transform based on the Otsu algorithm. Finally, the gradient image generated from the K-means clustering result is modified using the marked results to obtain the input for the watershed algorithm and complete the final segmentation. Experimental results show that the proposed method effectively reduces the sensitivity of the watershed algorithm to noise and gray-level variations, thereby overcoming the over-segmentation problem. Compared with the Otsu algorithm, region growing algorithm, and other classical methods, this approach segments only the external contours of the equipment while ignoring surface texture details.
[1] |
黄锐勇, 戴美胜, 郑跃斌, 等. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2): 147-155.
HUANG Ruiyong, DAI Meisheng, ZHENG Yuebin, et al. Defect detection of power equipment by infrared image[J]. Electric Power, 2021, 54(2): 147-155.
|
[2] |
赵天成, 罗吕, 杨代勇, 等. 多属性融合的电力设备红外热特征数字化方法[J]. 红外技术, 2021, 43(11): 1097-1103. http://hwjs.nvir.cn/cn/article/id/fdbced71-89e2-4d42-8252-4713304b6e1c
ZHAO Tiancheng, LUO Lv, YANG Daiyong, et al. A multi-attribute fusion method for digitizing infrared thermal characteristics of power equipment[J]. Infrared Technology, 2021, 43(11): 1097-1103. http://hwjs.nvir.cn/cn/article/id/fdbced71-89e2-4d42-8252-4713304b6e1c
|
[3] |
黄志鸿, 吴晟, 肖剑, 等. 基于引导滤波的电力设备热故障诊断方法研究[J]. 红外技术, 2021, 43(9): 910-915. http://hwjs.nvir.cn/cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d
HUANG Zhihong, WU Sheng, XIAO Jian, et al. Thermal fault diagnosis of power equipments based on guided filter[J]. Infrared Technology, 2021, 43(9): 910-915. http://hwjs.nvir.cn/cn/article/id/cb2a71f1-cd7c-4e76-977b-b6f7472b905d
|
[4] |
王启银, 薛建东, 任新辉. 一种自适应的变电站设备红外图像分割方法[J]. 红外技术, 2016, 38(9): 770-773. http://hwjs.nvir.cn/cn/article/id/hwjs201609010
WANG Qiyin, XUE Jiandong, REN Xinhui. An adaptive segmentation method of substation equipment infrared image[J]. Infrared Technology, 2016, 38(9): 770-773. http://hwjs.nvir.cn/cn/article/id/hwjs201609010
|
[5] |
王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/cn/article/id/hwjs201912004
WANG Xiaofang, MAO Huamin. Infrared image segmentation method for power equipment in complex background[J]. Infrared Technology, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/cn/article/id/hwjs201912004
|
[6] |
冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(5): 123-128.
FENG Zhenxin, ZHOU Dongguo, JIANG Yi, et al. Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123-128.
|
[7] |
谷凯凯, 周东国, 许晓路, 等. 一种基于局部特征的PCNN电力故障区域提取方法[J]. 计算机工程, 2018, 44(7): 291-296.
GU Kaikai, ZHOU Dongguo, XU Xiaolu, et al. Extraction method of PCNN electronic equipment fault region based on local feature[J]. Computer Engineering, 2018, 44(7): 291-296.
|
[8] |
余成波, 曾亮, 张林. 基于OTSU和区域生长的电气设备多点故障分割[J]. 红外技术, 2018, 40(10): 1008-1012. http://hwjs.nvir.cn/cn/article/id/hwjs201810013
YU Chengbo, ZENG Liang, ZHANG Lin. Multi point fault segmentation of electrical equipment based on OTSU and region growth[J]. Infrared Technology, 2018, 40(10): 1008-1012. http://hwjs.nvir.cn/cn/article/id/hwjs201810013
|
[9] |
张莲, 李梦天, 余松林, 等. 基于改进Lazy Snapping算法的红外图像分割方法研究[J]. 红外技术, 2021, 43(4): 372-377. http://hwjs.nvir.cn/cn/article/id/ebf85178-e375-4e52-b1d8-2f0eb42a6c9d
ZHANG Lian, LI Mengtian, YU Songlin, et al. An infrared image segmentation method based on improved lazy snapping algorithm[J]. Infrared Technology, 2021, 43(4): 372-377. http://hwjs.nvir.cn/cn/article/id/ebf85178-e375-4e52-b1d8-2f0eb42a6c9d
|
[10] |
陈达, 何全才, 迪二镇, 等. 自适应权重的偏微分分割模型在变电设备红外图像中的应用[J]. 红外技术, 2022, 44(2): 179-188. http://hwjs.nvir.cn/cn/article/id/24c18eab-82d8-4403-bb0a-891418242d98
CHEN Da, HE Quancai, DI Erzhen, et al. Application of partial differential segmentation model with adaptive weight in infrared image of substation equipment[J]. Infrared Technology, 2022, 44(2): 179-188. http://hwjs.nvir.cn/cn/article/id/24c18eab-82d8-4403-bb0a-891418242d98
|
[11] |
刘沛津, 王曦, 贺宁. 改进GSO与二维OTSU融合的红外图像多阈值分割方法[J]. 应用光学, 2021, 42(4): 671-677.
LIU Peijin, WANG Xi, HE Ning. Multi-threshold segmentation method of infrared images based on improved fusion of GSO and 2D OTSU[J]. Journal of Applied Optics, 2021, 42(4): 671-677.
|
[12] |
朱萍, 梅婕, 朱晓勃, 等. 双边滤波和标记分水岭的CT心脏图像分割[J]. 计算机工程与应用, 2015, 51(8): 170-173.
ZHU Ping, MEI Jie, ZHU Xiaobo, et al. Segmentation method of CT cardiac image based on bilateral filtering and watershed algorithm. Computer Engineering and Applications, 2015, 51(8): 170-173.
|
[13] |
刘军, 张艳迪, 高宏伟, 等. 地面树木的最优标记分水岭图像分割算法[J]. 电子测量技术, 2021, 44(17): 46-53.
LIU Jun, ZHANG Yandi, GAO Hongwei, et al. A watershed segmentation algorithm based on optimal marker for ground tree[J]. Electronic Measurement Technology, 2021, 44(17): 46-53.
|
[14] |
戴漩领, 茅云生, 周永清. 基于改进分水岭的焊缝分割算法[J]. 船舶工程, 2021, 43(S1): 428-433.
DAI Xuanling, MAO Yunsheng, ZHOU Yongqing. Weld segmentation algorithm based on improved watershed[J]. Ship Engineering, 2021, 43(S1): 428-433.
|
[15] |
张亦舒, 王晓娜, 侯德鑫, 等. 基于分水岭算法的电感激光热成像图像分割[J]. 红外技术, 2021, 43(4): 367-371. http://hwjs.nvir.cn/cn/article/id/aecd1882-2f80-43ce-9a44-377bd8341d7a
ZHANG Yishu, WANG Xiaona, HOU Dexin, et al. Image segmentation of inductors laser thermal imaging based on watershed algorithm[J]. Infrared Technology, 2021, 43(4): 367-371. http://hwjs.nvir.cn/cn/article/id/aecd1882-2f80-43ce-9a44-377bd8341d7a
|
[16] |
李云红, 张秋铭, 周小计, 等. 基于形态学及区域合并的分水岭图像分割算法[J]. 计算机工程与应用, 2020, 56(2): 190-195.
LI Yunhong, ZHANG Qiuming, ZHOU Xiaoji, et al. Watershed image segmentation algorithm based on morphology and region merging[J]. Computer Engineering and Applications, 2020, 56(2): 190-195.
|
[17] |
陈洋, 范荣双, 王竞雪, 等. 结合相位一致和分水岭变换的高分辨率遥感影像分割方法[J]. 激光与光电子学进展, 2017, 54(9): 381-386.
CHEN Yang, FAN Rongshuang, WANG Jingxue, et al. Segmentation of high-resolution remote sensing image combining phase consistency and watershed transformation[J]. Laser & Optoelectronics Progress, 2017, 54(9): 381-386.
|
[18] |
王祥, 罗素云. 基于区域分离与聚合的分水岭分割[J]. 计算机与数字工程, 2021, 49(1): 190-195.
WANG Xiang, LUO Suyun. Watershed segmentation based on region separation and aggregation[J]. Computer & Digital Engineering, 2021, 49(1): 190-195.
|
[19] |
刘智嘉, 夏寅辉, 杨德振, 等. 基于中值滤波器的红外图像噪声处理的改进方法[J]. 激光与红外, 2019, 4903: 376-380.
LIU Zhijia, XIA Yinhui, YANG Dezhen, et al. An improved method for infrared image noise processing based on median filter[J]. Laser & Infrared, 2019, 4903: 376-380.
|
[20] |
沈雯倩, 张莉萍, 黄勃, 等. 改进的K-means红外图像互感器分割方法[J]. 传感器与微系统, 2018, 37(11): 63-65.
SHEN Wenqian, ZHANG Liping, HUANG Bo, et al. Improved K-means method for infrared image mutual inductor segmentation[J]. Transducer and Microsystem Technologies, 2018, 37(11): 63-65.
|
[21] |
周俊, 王超, 王帅, 等. 改进分水岭算法与K-means方法结合的图像分割[J]. 重庆理工大学学报(自然科学), 2020, 34(4): 176-182.
ZHOU Jun, WANG Chao, WANG Shuai. Combining improved watershed algorithm with K-means method in image segmentation[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(4): 176-182.
|
[22] |
栾奎峰, 刘帅, 潘与佳, 等. 基于改进标记分水岭的高分辨率遥感影像海岸水边线提取方法[J]. 海洋学研究, 2021, 39(1): 20-28.
LUAN Kuifeng, LIU Shuai, PAN Yujia, et al. Research on shoreline extraction for high-resolution remote sensing image based on improved marked watershed algorithm[J]. Journal of Marine Sciences, 2021, 39(1): 20-28.
|