XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20.
Citation: XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20.

Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion

More Information
  • Received Date: November 01, 2020
  • Revised Date: January 24, 2021
  • To address the problem of insufficient utilization of spatial-spectrum features in existing convolutional neural network classification algorithms for hyperspectral remote sensing images, we propose a hyperspectral image classification strategy based on a hybrid convolution capsule network under multi-feature fusion. First, a combination of principal component analysis and non-negative matrix decomposition is used to reduce the dimensionality of a hyperspectral dataset. Second, the principal components obtained through dimensionality reduction are used to generate a multidimensional feature set through super-pixel segmentation and cosine clustering. Finally, the superimposed feature set is used to extract spatial-spectrum features through a two-dimensional and three-dimensional multi-scale hybrid convolutional network, and a capsule network is used to classify them. We performed experiments on different hyperspectral datasets, and the results revealed that under the same 20-dimensional spectral setting, the proposed strategy significantly improves the overall accuracy, average accuracy, and Kappa coefficient compared to traditional classification strategies.
  • [1]
    蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感图像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm

    LAN J, ZOU J, HAO Y, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm
    [2]
    徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175-184. DOI: 10.3969/j.issn.0372-2112.2018.01.024

    XU J, SHEN Y, LIU P, et al. Hyperspectral image classification combining kernel sparse multinomial logistic regression and TV-L1 error rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175-184. DOI: 10.3969/j.issn.0372-2112.2018.01.024
    [3]
    刘启超, 肖亮, 刘芳, 等. SSC DenseNet: 一种空-谱卷积稠密网络的高光谱图像分类算法[J]. 电子学报, 2020, 48(4): 751-762. DOI: 10.3969/j.issn.0372-2112.2020.04.017

    LIU Q, XIAO L, LIU F, et al. SSC DenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 2020, 48(4): 751-762. DOI: 10.3969/j.issn.0372-2112.2020.04.017
    [4]
    LI S, SONG W, FANG L, et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709. DOI: 10.1109/TGRS.2019.2907932
    [5]
    Nanjun H, Paoletti M E, Mario H J, et al. Feature extraction with multiscale covariance maps for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 57(2): 755-769.
    [6]
    GAO H, LIN S, LI C, et al. Application of hyperspectral image classification based on overlap pooling[J]. Neural Processing Letters, 2019, 49(3): 1335-1354. DOI: 10.1007/s11063-018-9876-7
    [7]
    YU C, ZHAO M, SONG M, et al. Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1866-1881. DOI: 10.1109/JSTARS.2019.2911987
    [8]
    YING L, Haokui Z, QIANG S. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67-88. DOI: 10.3390/rs9010067
    [9]
    HE M, LI B, CHEN H, et al. Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//IEEE International Conference on Image Processing, 2017: 3904-3908.
    [10]
    Roy S K, Krishna G, Dubey S R, et al. Hybrid SN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281. DOI: 10.1109/LGRS.2019.2918719
    [11]
    WEI W, ZHANG J, LEI Z, et al. Deep cube-pair network for hyperspectral imagery classification[J]. Remote Sensing, 2018, 10(5): 783-801. DOI: 10.3390/rs10050783
    [12]
    Baisantry M, SAO A K. Band selection using segmented PCA and component loadings for hyperspectral image classification[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 3812-3815.
    [13]
    ZHANG W, FU K, SUN X, et al. Joint optimisation convex-negative matrix factorisation for multi-modal image collection summarisation based on images and tags[J]. IET Computer Vision, 2018, 13(2): 125-130.
    [14]
    Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. DOI: 10.1109/TPAMI.2012.120
    [15]
    Achanta R, Süsstrunk S. Superpixels and polygons using simple non-iterative clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
    [16]
    Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems, 2017: 3856-3866.
    [17]
    ZHONG Y, WANG X, XU Y, et al. Mini-UAV-Borne hyperspectral remote sensing: from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62.
  • Related Articles

    [1]CHEN Xu, WU Wei, PENG Dongliang, GU Yu. Infrared-PV: an Infrared Target Detection Dataset for Surveillance Application[J]. Infrared Technology , 2023, 45(12): 1304-1313.
    [2]LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
    [3]ZHANG Lu, ZHANG Lei, FU Zhikai, TIAN Ya. Low Temperature Evaluation Method of Infrared Detector Integrated with Optical System[J]. Infrared Technology , 2021, 43(12): 1188-1192.
    [4]ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology , 2021, 43(8): 766-772.
    [5]ZHU Shuangshuang, ZOU Peng, LU Meina, ZHANG Aiwen, LIU Zhenhai, QIU Zhenwei, HONG Jin. Temperature Control System Design of Infrared Detector Based on Bang-Bang and PID Control[J]. Infrared Technology , 2017, 39(11): 990-995.
    [6]High Performance InP/InGaAs Wide Spectrum Infrared Detectors[J]. Infrared Technology , 2016, 38(1): 1-5.
    [7]YONG Chao-Liang, DUAN Dong, XU Chun, CHEN Fan-Sheng. The Study on the Dark Current of the Infrared Detector Measuring Method[J]. Infrared Technology , 2012, 34(4): 196-199. DOI: 10.3969/j.issn.1001-8891.2012.04.003
    [8]Performance HgCdTe Infrared Detector at Different Temperatures[J]. Infrared Technology , 2012, 34(1): 1-3,15. DOI: 10.3969/j.issn.1001-8891.2012.01.001
    [9]ZHANG Tong, CHEN Xiao-wen, LIU Yin-nian, WANG Jian-yu. Design and Implement of Temperature Controlling System of Spaceborne Infrared Detector[J]. Infrared Technology , 2005, 27(2): 167-170. DOI: 10.3969/j.issn.1001-8891.2005.02.017
    [10]An Inquiry into the Performances of the Far Infrared Magnetic Fibers[J]. Infrared Technology , 2002, 24(6): 86-89. DOI: 10.3969/j.issn.1001-8891.2002.06.020
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return