Citation: | XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20. |
[1] |
蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感图像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm
LAN J, ZOU J, HAO Y, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm
|
[2] |
徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175-184. DOI: 10.3969/j.issn.0372-2112.2018.01.024
XU J, SHEN Y, LIU P, et al. Hyperspectral image classification combining kernel sparse multinomial logistic regression and TV-L1 error rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175-184. DOI: 10.3969/j.issn.0372-2112.2018.01.024
|
[3] |
刘启超, 肖亮, 刘芳, 等. SSC DenseNet: 一种空-谱卷积稠密网络的高光谱图像分类算法[J]. 电子学报, 2020, 48(4): 751-762. DOI: 10.3969/j.issn.0372-2112.2020.04.017
LIU Q, XIAO L, LIU F, et al. SSC DenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 2020, 48(4): 751-762. DOI: 10.3969/j.issn.0372-2112.2020.04.017
|
[4] |
LI S, SONG W, FANG L, et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709. DOI: 10.1109/TGRS.2019.2907932
|
[5] |
Nanjun H, Paoletti M E, Mario H J, et al. Feature extraction with multiscale covariance maps for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 57(2): 755-769.
|
[6] |
GAO H, LIN S, LI C, et al. Application of hyperspectral image classification based on overlap pooling[J]. Neural Processing Letters, 2019, 49(3): 1335-1354. DOI: 10.1007/s11063-018-9876-7
|
[7] |
YU C, ZHAO M, SONG M, et al. Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1866-1881. DOI: 10.1109/JSTARS.2019.2911987
|
[8] |
YING L, Haokui Z, QIANG S. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67-88. DOI: 10.3390/rs9010067
|
[9] |
HE M, LI B, CHEN H, et al. Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//IEEE International Conference on Image Processing, 2017: 3904-3908.
|
[10] |
Roy S K, Krishna G, Dubey S R, et al. Hybrid SN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281. DOI: 10.1109/LGRS.2019.2918719
|
[11] |
WEI W, ZHANG J, LEI Z, et al. Deep cube-pair network for hyperspectral imagery classification[J]. Remote Sensing, 2018, 10(5): 783-801. DOI: 10.3390/rs10050783
|
[12] |
Baisantry M, SAO A K. Band selection using segmented PCA and component loadings for hyperspectral image classification[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 3812-3815.
|
[13] |
ZHANG W, FU K, SUN X, et al. Joint optimisation convex-negative matrix factorisation for multi-modal image collection summarisation based on images and tags[J]. IET Computer Vision, 2018, 13(2): 125-130.
|
[14] |
Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. DOI: 10.1109/TPAMI.2012.120
|
[15] |
Achanta R, Süsstrunk S. Superpixels and polygons using simple non-iterative clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
|
[16] |
Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems, 2017: 3856-3866.
|
[17] |
ZHONG Y, WANG X, XU Y, et al. Mini-UAV-Borne hyperspectral remote sensing: from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62.
|
[1] | WU Xiaojun, YU Xianzhe, WANG Peng, ZHAO He, LI Tiancheng. Superpixel-Based Improved Fuzzy C-Means Clustering for Electrical Equipment Infrared Image Segmentation[J]. Infrared Technology , 2025, 47(2): 235-242. |
[2] | MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27. |
[3] | WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology , 2021, 43(8): 757-765. |
[4] | LIN Li, LIU Xin, ZHU Junzhen, FENG Fuzhou. Classification of Ultrasonic Infrared Thermal Images Using a Convolutional Neural Network[J]. Infrared Technology , 2021, 43(5): 496-501. |
[5] | QI Yongfeng, CHEN Jing, HUO Yuanlian, LI Fayong. Hyperspectral Image Classification Algorithm Based on Multiscale Convolutional Neural Network[J]. Infrared Technology , 2020, 42(9): 855-862. |
[6] | DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, YU Wen. Infrared and Visible Image Fusion Based on Convolutional Neural Network[J]. Infrared Technology , 2020, 42(7): 660-669. |
[7] | LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80. |
[8] | LI Hanchao, CAI Yi, WANG Lingxue. Image Semantic Segmentation Based on Fully Convoluted Network with Global Feature Extraction[J]. Infrared Technology , 2019, 41(7): 595-599,615. |
[9] | ZHAN Wei, MA Xinxing, XU Zijian. IR Blind Pixels Detection and Correction Based on Superpixel Segmentation[J]. Infrared Technology , 2018, 40(11): 1085-1090. |
[10] | YUN Hong-quan, XU Li, SUN Xiao, MING De-lie, JU Wen. Moving Target Detection Algorithm Based on Superpixel Spatiotemporal Saliency[J]. Infrared Technology , 2015, (5): 404-410. |