Citation: | XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20. |
[1] |
蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感图像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm
LAN J, ZOU J, HAO Y, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm
|
[2] |
徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175-184. DOI: 10.3969/j.issn.0372-2112.2018.01.024
XU J, SHEN Y, LIU P, et al. Hyperspectral image classification combining kernel sparse multinomial logistic regression and TV-L1 error rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175-184. DOI: 10.3969/j.issn.0372-2112.2018.01.024
|
[3] |
刘启超, 肖亮, 刘芳, 等. SSC DenseNet: 一种空-谱卷积稠密网络的高光谱图像分类算法[J]. 电子学报, 2020, 48(4): 751-762. DOI: 10.3969/j.issn.0372-2112.2020.04.017
LIU Q, XIAO L, LIU F, et al. SSC DenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 2020, 48(4): 751-762. DOI: 10.3969/j.issn.0372-2112.2020.04.017
|
[4] |
LI S, SONG W, FANG L, et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709. DOI: 10.1109/TGRS.2019.2907932
|
[5] |
Nanjun H, Paoletti M E, Mario H J, et al. Feature extraction with multiscale covariance maps for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 57(2): 755-769.
|
[6] |
GAO H, LIN S, LI C, et al. Application of hyperspectral image classification based on overlap pooling[J]. Neural Processing Letters, 2019, 49(3): 1335-1354. DOI: 10.1007/s11063-018-9876-7
|
[7] |
YU C, ZHAO M, SONG M, et al. Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1866-1881. DOI: 10.1109/JSTARS.2019.2911987
|
[8] |
YING L, Haokui Z, QIANG S. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67-88. DOI: 10.3390/rs9010067
|
[9] |
HE M, LI B, CHEN H, et al. Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//IEEE International Conference on Image Processing, 2017: 3904-3908.
|
[10] |
Roy S K, Krishna G, Dubey S R, et al. Hybrid SN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281. DOI: 10.1109/LGRS.2019.2918719
|
[11] |
WEI W, ZHANG J, LEI Z, et al. Deep cube-pair network for hyperspectral imagery classification[J]. Remote Sensing, 2018, 10(5): 783-801. DOI: 10.3390/rs10050783
|
[12] |
Baisantry M, SAO A K. Band selection using segmented PCA and component loadings for hyperspectral image classification[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 3812-3815.
|
[13] |
ZHANG W, FU K, SUN X, et al. Joint optimisation convex-negative matrix factorisation for multi-modal image collection summarisation based on images and tags[J]. IET Computer Vision, 2018, 13(2): 125-130.
|
[14] |
Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. DOI: 10.1109/TPAMI.2012.120
|
[15] |
Achanta R, Süsstrunk S. Superpixels and polygons using simple non-iterative clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
|
[16] |
Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems, 2017: 3856-3866.
|
[17] |
ZHONG Y, WANG X, XU Y, et al. Mini-UAV-Borne hyperspectral remote sensing: from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62.
|
[1] | LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48. |
[2] | CHEN Tao, LI Weizhong, LIU Yanlei, WANG Fei, JIANG Chenghang, ZHOU Hong. Feasibility Analysis of On-Line Infrared Detection of Incomplete Penetration Defect in Metal Pipe Welded Joint[J]. Infrared Technology , 2019, 41(12): 1146-1150. |
[3] | WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969. |
[4] | LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63. |
[5] | A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274. |
[6] | YUE Da-hao, LI Xiao-li, ZHANG Hao-jun, LI Ye-shu, FENG Li-chun, WU Nai-ming. IR Thermography Inspection of Wind Turbine Blades[J]. Infrared Technology , 2011, 33(10): 614-617. DOI: 10.3969/j.issn.1001-8891.2011.10.013 |
[7] | FAN Chao, SUN Ning-ning, XIA Xu. Super-resolution Reconstruction Based on Image Sequences[J]. Infrared Technology , 2010, 32(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2010.05.007 |
[8] | ZHOU Jian-long, CHENG Xue-qun, HU Yang, LI Xiao-gang. Damage Inspection and Evaluation of Industrial Furnace Wall Lining with Infrared Thermal Imager[J]. Infrared Technology , 2008, 30(10): 595-598. DOI: 10.3969/j.issn.1001-8891.2008.10.010 |
[9] | XU Hong-cai, XIANG Jian-yong, PAN Hao. An Improved POCS Algorithm for Super-resolution Image Reconstruction[J]. Infrared Technology , 2005, 27(6): 477-480. DOI: 10.3969/j.issn.1001-8891.2005.06.010 |
[10] | Damage Inspection of Flue Lining with Infrared Thermovision[J]. Infrared Technology , 2002, 24(1): 60-62. DOI: 10.3969/j.issn.1001-8891.2002.01.016 |
1. |
关晓丹,郑东平,肖成. 基于全卷积网络的复杂背景红外弱小目标检测研究. 激光杂志. 2024(04): 254-258 .
![]() | |
2. |
余云霞,李毅鹏,陈姝敏. 基于锚框的远距离多尺度红外目标跟踪技术. 激光与红外. 2024(10): 1594-1599 .
![]() | |
3. |
孟祥瑞,李成良,文继权. 基于局部梯度的红外线列扫描图像小目标检测. 激光杂志. 2023(10): 52-56 .
![]() |