LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80.
Citation: LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80.

Infrared Image Super-resolution Using Improved Convolutional Neural Network

More Information
  • Related Articles

    [1]SHI Yifeng, CHEN Nan, ZHU Fang, MAO Wenbiao, LI Faming, WANG Tianfu, ZHANG Jiqing, YAO Libin. Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes[J]. Infrared Technology , 2024, 46(4): 427-436.
    [2]BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182.
    [3]YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
    [4]ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
    [5]LIN Renpu, ZHANG Li, MA Chenhui, LIU Xuan, ZHANG Hao. Improved Super-resolution Reconstruction of Infrared Images Based on Deep Back-projection Networks[J]. Infrared Technology , 2020, 42(9): 873-879.
    [6]YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433.
    [7]WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969.
    [8]LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63.
    [9]A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274.
    [10]The Methods of Image Enhancement Based Grays-cale Modincation[J]. Infrared Technology , 2003, 25(3): 29-31,36. DOI: 10.3969/j.issn.1001-8891.2003.03.008
  • Cited by

    Periodical cited type(9)

    1. 白皓,白廷柱. 基于深度残差神经网络的红外图像超分辨率重构算法. 红外技术. 2024(02): 176-182 . 本站查看
    2. 上官小雨,于跃波. 视觉传达的多帧平面图像纹理细节增强算法. 吉林大学学报(信息科学版). 2023(02): 359-366 .
    3. 赵利芬,常晓通. SAR图像增强的建筑基坑底面下沉风险监测仿真. 计算机仿真. 2023(09): 291-295 .
    4. 胡德敏,闵天悦. 改进型轻量级GAN的红外图像超分辨率方法. 小型微型计算机系统. 2022(08): 1711-1717 .
    5. 仲崇丽,刘华. 改进卷积神经网络的热红外成像人脸识别. 激光杂志. 2022(12): 117-121 .
    6. 马龙祥,杨浩,宋婷婷. 基于数据上采样的医学图像分割研究. 电子设计工程. 2021(05): 7-11 .
    7. 左岑,杨秀杰,张捷,王璇. 基于轻量级金字塔密集残差网络的红外图像超分辨增强. 红外技术. 2021(03): 251-257 . 本站查看
    8. 李萍,刘以安,徐安林. 基于多尺度耦合的密集残差网络红外图像增强. 电子测量与仪器学报. 2021(07): 148-155 .
    9. 史永祥,蒋斌,黄雍晫,杨桂生,李庆武,张志良. 基于深度学习的红外图像超分辨率重建. 应用科技. 2020(04): 8-13 .

    Other cited types(11)

Catalog

    Article views (177) PDF downloads (37) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return