Citation: | WU Xiaojun, YU Xianzhe, WANG Peng, ZHAO He, LI Tiancheng. Superpixel-Based Improved Fuzzy C-Means Clustering for Electrical Equipment Infrared Image Segmentation[J]. Infrared Technology , 2025, 47(2): 235-242. |
An improved super-pixel based FCM segmentation method for infrared image of power equipment is presented to solve the problems of low segmentation accuracy, slow convergence, poor selection of initial cluster centers and local optimization in traditional fuzzy C-mean (FCM) algorithm. First, a simple non-iterative clustering (SNIC) superpixel algorithm based on multi-feature fusion is used to pre-segment the image, and superpixels are used instead of pixels to express the image features, which reduces the subsequent processing complexity. Secondly, using the idea of maximizing the variance between classes, the gray value corresponding to the maximum value of gray histogram when the variance between classes is maximized is selected as the initial cluster center of the improved algorithm to avoid generating local optimal solution. Finally, combining the SNIC algorithm of multi-feature fusion with the FCM algorithm, the infrared image of power equipment is segmented. The experimental results show that the algorithm improves the under segmentation of the comparison algorithm on the contour of the device and the local high temperature area, improves the operation efficiency, and lays a foundation for the later fault diagnosis of power equipment.
[1] |
BU C, LIU T, LI R, et al. Infrared image segmentation algorithm based on multi structure morphology—pulse coupled neural network in application to the inspection of aerospace materials[J]. Russian Journal of Nondestructive Testing, 2022, 57(11): 1018-1026.
|
[2] |
FENG Hong, SONG Jie, HANG Meng, et al. A novel framework on intelligent detection for module defects of PV plant combining the visible and infrared images[J]. Solar Energy, 2022, 236: DOI: 10.1016/j.solener.2022.03.018
|
[3] |
程子夜. 红外图像处理在架空线路故障诊断中的应用[D]. 淮南: 安徽理工大学, 2020.
CHENG Ziye. Application of Infrared Image Processing in Fault Diagnosis of Overhead Lines[D]. Huainan: Anhui University of Science and Technology, 2020.
|
[4] |
王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020, 41(5): 120-129.
WANG Xiaofei, HU Fankui, HUANG Shuo. Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering[J]. Journal on Communications, 2020, 41(5): 120-129.
|
[5] |
刘沛津, 王曦, 贺宁. 改进GSO与二维OTSU融合的红外图像多阈值分割方法[J]. 应用光学, 2021, 42(4): 671-677.
LIU Peijin, WANG Xi, HE Ning. Improved infrared image multi threshold segmentation method based on fusion of GSO and two-dimensional OTSU[J]. Journal of Applied Optics, 2021, 42(4): 671-677.
|
[6] |
聂方彦, 李建奇, 屠添翼. 一种基于信息论距离的复杂图像分割方法[J]. 红外技术, 2018, 40(8): 786-791. http://hwjs.nvir.cn/article/id/hwjs201808011
NIE Fangyan, LI Jianqi, TU Tianyi. A complex image segmentation method based on information theory distance[J]. Infrared Technology, 2018, 40(8): 786-791. http://hwjs.nvir.cn/article/id/hwjs201808011
|
[7] |
XIAO Leyi, OUYANG Honglin, FAN Chaodong. An improved Otsu method for threshold segmentation based on set mapping and trapezoid region intercept histogram[J]. Optik, 2019, 196(C): 163106-163106.
|
[8] |
GUO H, CHEN P, HUANG S, et al. A threshold segmentation method for non-uniform illumination image based on brightness equalization[J]. IOP Conference Series: Materials Science and Engineering, 2019, 569: 052046. DOI: 10.1088/1757-899X/569/5/052046
|
[9] |
戴若辰, 赵明富, 汤斌, 等. 基于Otsu分割与边缘检测的钢丝绳缺陷检测方法研究[J]. 激光与光电子学进展, 2021, 58(16): 566-573.
DAI Ruochen, ZHAO Mingfu, TANG Bin, et al. Research on defect detection method of steel wire rope based on Otsu segmentation and edge detection[J]. Laser & Optoelectronics Progress, 2021, 58(16): 566-573.
|
[10] |
陈露. 无人机载红外管道检测的研究与设计[D]. 芜湖: 安徽工程大学, 2018.
CHEN Lu. Research and Design of Infrared Pipeline Detection for Unmanned Aerial Vehicles[D]. Wuhu: Anhui Polytechnic University, 2018.
|
[11] |
黄新宇, 张洋, 王黎明, 等. 基于Mask-RCNN算法的复合绝缘子串红外图像分割与温度读取[J]. 高压电器, 2021, 57(9): 87-94.
HUANG Xinyu, ZHANG Yang, WANG Liming, et al. Infrared image segmentation and temperature reading of composite insulator strings based on Mask RCNN algorithm[J]. High Voltage Apparatus, 2021, 57(9): 87-94.
|
[12] |
袁刚, 许志浩, 康兵, 等. 基于DeepLabv3+网络的电流互感器红外图像分割方法[J]. 红外技术, 2021, 43(11): 1127-1134. http://hwjs.nvir.cn/article/id/b9df2f53-2244-471b-b0ec-42159cfaa654
YUAN Gang, XU Zhihao, KANG Bing, et al. Infrared image segmentation method for current transformers based on DeepLabv3+network[J]. Infrared Technology, 2021, 43(11): 1127-1134. http://hwjs.nvir.cn/article/id/b9df2f53-2244-471b-b0ec-42159cfaa654
|
[13] |
赵祥宇, 陈沫涵. 基于聚类的图像分割方法综述[J]. 信息技术, 2018(6): 92-94, 99.
ZHAO Xiangyu, CHEN Mohan. A review of clustering-based image segmentation methods[J]. Information Technology, 2018(6): 92-94, 99.
|
[14] |
加小红. 聚类算法及其在图像分割中的应用研究[D]. 兰州: 兰州交通大学, 2017.
JIA Xiaohong. Research on Clustering Algorithm and Its Application in Image Segmentation[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
|
[15] |
ZADEH LA. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
|
[16] |
WANG Qingsheng, WANG Xiaopeng, FANG Chao, et al. Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation[J]. Applied Soft Computing Journal, 2020, 92: 106318.
|
[17] |
LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-Means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027-3041.
|
[18] |
LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy C-Means clustering for color image segmentation[J]. IEEE Trans. Fuzzy Systems, 2019, 27(9): 1753-1766.
|
[19] |
ACHANTA R, SUSSTRANK S. Superpixels and polygonsusing simple non-iterative clustering[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
|
[20] |
郑金云. 基于聚类的超像素分割方法研究[D]. 桂林: 桂林电子科技大学, 2021.
ZHENG Jinyun. Research on Clustering-based Superpixel Segmentation Method[D]. Guilin: Guilin University Of Electronic Technology, 2021.
|
1. |
刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
![]() | |
2. |
刘垚. 复合绝缘子表面异常发热点识别方法. 光通信研究. 2024(06): 42-47 .
![]() | |
3. |
戴月明,杨陆锋,童雄敏. 基于红外图像与深度学习的EMS低压设备实时断面状态校核方法. 红外技术. 2024(12): 1464-1470 .
![]() | |
4. |
刘宸轩. 基于小波分析的电气设备故障检测方法研究. 专用汽车. 2023(01): 58-60 .
![]() | |
5. |
张宗包. 基于图像融合技术的变电站二次设备热故障自主定位研究. 机械与电子. 2023(03): 18-22 .
![]() | |
6. |
魏岸若. 基于数据驱动的电气自动化设备运行故障预警研究. 电气技术与经济. 2023(06): 71-74+89 .
![]() | |
7. |
林航,方宁. 模糊聚类算法在舰船电气系统故障远程检测中的应用. 舰船科学技术. 2022(04): 156-160 .
![]() | |
8. |
常硕,梁杰,姜久超. 基于模拟退火算法的水电站电气装置故障运行状态自动捕捉方法. 水利水电技术(中英文). 2022(03): 110-118 .
![]() | |
9. |
杨琳玮. 基于物联网技术的电气设备全生命周期风险预测方法. 自动化技术与应用. 2022(06): 73-76 .
![]() | |
10. |
葛黄徐,郑雷,江洪,郭一凡,周东国. 基于MST框架的PCNN输电线路红外热故障区域提取方法. 红外技术. 2022(07): 709-715 .
![]() | |
11. |
邵健. 基于无线传感网络的建筑电气设备自动监测系统. 能源与环保. 2022(08): 251-256 .
![]() | |
12. |
刘俊,章磊. 基于半导体激光干涉技术的电气设备状态检测研究. 激光杂志. 2021(05): 52-56 .
![]() | |
13. |
王子默,王清亮. 基于梯度扩散的电气设备调试故障行波检测. 计算机仿真. 2020(05): 468-472 .
![]() | |
14. |
邹梓秀. 一种基于MeanShift改进的移动目标跟踪算法. 九江学院学报(自然科学版). 2020(01): 45-47 .
![]() | |
15. |
张平,李东民,苏晓宇,李冠群,朱光南. SIFT特征点匹配算法在GIS设备内部发热判断中的应用. 自动化与仪器仪表. 2020(07): 190-193+197 .
![]() | |
16. |
许晓路,周文,周东国,朱诗沁,倪辉,罗传仙. 基于PCNN分层聚类迭代的故障区域自动提取方法. 红外技术. 2020(08): 809-814 .
![]() | |
17. |
王琦,张永杰,周竞,刘庸奇. 基于无线红外热成像仪的变电设备识别和检测. 微型电脑应用. 2020(09): 170-172+176 .
![]() | |
18. |
徐小冰,袁婧,廖雁群,韦亦龙,周承科,周文俊. 基于Faster RCNN与Mean-Shift的电缆附件缺陷红外图像自动诊断方法. 高电压技术. 2020(09): 3070-3080 .
![]() |