Citation: | MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27. |
[1] |
ZHOU Huixin, LI Qing, LIU Shangqian, et al. Nonuniformity and its correction principle of infrared focal plane arrays[J]. Laser & Infrared, 2003, 3(6): 46-48. http://www.researchgate.net/publication/293264376_Nonuniformity_and_its_correction_principle_of_infrared_focal_plane_arrays
|
[2] |
Scribner D A, Sarkady K A, Kruer M R, et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks[C]// International Society for Optics and Photonics, 1991: 100-109.
|
[3] |
ZUO C, CHEN Q, GU G, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Optical Review, 2011, 18(2): 197-202. DOI: 10.1007/s10043-011-0042-y
|
[4] |
QIAN W, CHEN Q, GU G. Space low-pass and temporal high-pass nonuniformity correction algorithm[J]. Optical Review, 2010, 17(1): 24-29. DOI: 10.1007/s10043-010-0005-8
|
[5] |
Harris J G, Chiang Y M. Nonuniformity correction using the constant-statistics constraint: analog and digital implementations[C]// Proceedings of SPIE - The International Society for Optical Engineering, 1997, 3061: 895-905.
|
[6] |
KUANG Xiaodong, SUI Xiubao, CHEN Qian, et al. Single infrared image stripe noise removal using deep convolutional networks[J]. IEEE Photonics Journal, 2017, 9(4): 1-13. http://www.onacademic.com/detail/journal_1000039958065210_b903.html
|
[7] |
赵春晖, 刘振龙. 改进的红外图像神经网络非均匀性校正算法[J]. 红外与激光工程, 2013, 42(4): 1079-1083. DOI: 10.3969/j.issn.1007-2276.2013.04.044
ZHAO Chunhui, LIU Zhenlong. Improved infrared image neural network non-uniformity correction algorithm[J]. Infrared and Laser Engineering, 2013, 42(4): 1079-1083. DOI: 10.3969/j.issn.1007-2276.2013.04.044
|
[8] |
张龙, 董峰, 傅雨田. 基于神经网络的红外图像非均匀性校正[J]. 红外技术, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011
ZHANG Long, DONG Feng, FU Yutian. Non-uniformity correction for infrared image using neural networks[J]. Infrared Technology, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011
|
[9] |
MOU Xingang, LU Junjie, ZHOU Xiao, et al. Single frame infrared image adaptive correction algorithm based on residual network[C]//The 11th International Symposium on Photonics and Optoelectronics(SOPO), 2018: 17-23.
|
[10] |
牟新刚, 陆俊杰, 周晓. 基于残差编解码网络的红外图像自适应校正算法[J]. 红外技术, 2020, 42(9): 833-839. http://hwjs.nvir.cn/article/id/hwjs202009004
MOU Xingang, LU Junjie, ZHOU Xiao. Adaptive correction algorithm of infrared image based on encoding and decoding residual network[J]. Infrared Technology, 2020, 42(9): 833-839. http://hwjs.nvir.cn/article/id/hwjs202009004
|
[11] |
HE Zewei, CAO Yanpeng, DONG Yafei, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach[J]. Applied Optics, 2018, 57(18): 155-164 DOI: 10.1364/AO.57.00D155
|
[12] |
ZHANG Kai, ZUO Wangmeng, ZHANG Lei. Ffdnet: Toward a fast and flexible solution for CNN based image denoising[C]//IEEE Transactions on Image Processing, 2017: 4608-4622.
|
[13] |
GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 1712-1722.
|
[14] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
|
[15] |
QIAN W, CHEN Q, GU G. Space low-pass and temporal high-pass nonuniformity correction algorithm[J]. Optical Review, 2010, 17(1): 24-29. DOI: 10.1007/s10043-010-0005-8
|
[16] |
CHANG Y, YAN L, LIU L, et al. Infrared Aerothermal nonuniform correction via deep multiscale residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7): 1120-1124. DOI: 10.1109/LGRS.2019.2893519
|
[1] | MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375. |
[2] | LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277. |
[3] | YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566. |
[4] | LEI Zengqiang, XU Huiyong, CHENG Gang, SHEN Liangji, CHEN Zhixue. Design of Readout Circuit of Incremental Focusing Encoder Based on CPLD[J]. Infrared Technology , 2020, 42(11): 1037-1041. |
[5] | LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419. |
[6] | ZHANG Yuping, TANG Libin. Research Progress in Photodetectors Based on Topological Insulators[J]. Infrared Technology , 2020, 42(1): 1-9. |
[7] | GAO Run, NIU Chunhui, LI Xiaoying, LYU Yong. Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser[J]. Infrared Technology , 2016, 38(8): 636-642. |
[8] | KANG Bing-xin, LI Yu, BAI Pi-ji, LIU Hui-ping, WANG Bo. Design of A Novel Current Mirroring Integration Readout Integrated Circuit for Quantum Well Infrared Photodetectors[J]. Infrared Technology , 2012, 34(2): 95-98. DOI: 10.3969/j.issn.1001-8891.2012.02.007 |
[9] | WANG Yong-pan, GUO Fang-min. Wide Dynamic Range Readout Circuit Design on High Sensitivity Quantum Dot-in-Well Photodetector[J]. Infrared Technology , 2011, 33(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2011.06.006 |
[10] | ZHAN Guo-zhong, GUO Fang-min, HUANG Jing, ZHU Rong-jing. Research on Control Circuit with Tunable Parameters for Photodetector Readout Circuit[J]. Infrared Technology , 2008, 30(8): 485-488. DOI: 10.3969/j.issn.1001-8891.2008.08.014 |
1. |
张健,黄安穴. 基于划区域宇宙算法的红外与可见光图像融合研究. 光电子·激光. 2024(09): 962-970 .
![]() | |
2. |
唐泽恬,童林,龙先梅. 基于CNN与直方图规定化的红外与低照度可见光图像融合. 计算技术与自动化. 2023(03): 102-106+146 .
![]() | |
3. |
张君君. 基于卷积神经网络的信息融合技术应用研究. 信息记录材料. 2022(07): 43-45 .
![]() |