Citation: | ZHANG Huazhong, DENG Xu, LI Fei, YANG Rong, ZHONG Mian. Infrared Detection of Defects in Aircraft Composite Materials Based on Improved YOLOv7-FSE Algorithm[J]. Infrared Technology , 2025, 47(5): 640-647. |
This study proposes an improved detection algorithm, YOLOv7-FSE (YOLOv7 with FReLU-SiLU-EIOU enhancements), to address the challenges of low resolution and poor detection accuracy in infrared images of composite material defects in aircraft. These limitations make it difficult to accurately characterize defect features. The proposed algorithm introduces several key modifications to the original YOLOv7 architecture. First, the SiLU activation function is replaced with the funnel activation function FReLU to improve spatial sensitivity to defect features. Subsequently, space-to-depth convolution (SPD Convolution) is employed to improve the feature extraction process, thereby enhancing the algorithm's ability to characterize complex defect features in low resolution infrared images. Finally, the EIOU loss function is replaced by the CIOU loss function, and the boundary box recognition weights are optimized to generate higher quality anchor boxes, further improving overall detection performance. Comparison results demonstrate that YOLOv7-FSE outperforms traditional detection methods such as Faster RCNN and YOLOv3. Specifically, it achieves a mean average precision (mAP) improvement of 10.8% over Faster R-CNN and 10.1% over YOLOv3. Compared to the original YOLOv7, the precision (P) increases from 88.3% to 94.9%, while the mAP rises from 90.1% to 97.7%. The YOLOv7-FSE algorithm is well-suited for infrared detection of composite material defects on aircraft surfaces and holds significant potential for integration with embedded devices for rapid, on-site defect detection.
[1] |
秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14): 1402002.
QIN Y L, SUN B H, ZHANG H, et al. Research progress on selective laser melting of aluminum alloys and their composite materials in the aerospace field[J]. Chinese Journal of Lasers, 2021, 48(14): 1402002.
|
[2] |
徐丽, 张幸红, 韩杰才. 航空航天复合材料无损检测研究现状[J]. 材料导报, 2005(8): 79-82.
XU L, ZHANG X H, HAN J C. Research status of non-destructive testing of aerospace composite materials[J]. Materials Introduction, 2005(8): 79-82.
|
[3] |
LIU B W, XIANG H X, ZHONG M, et al. Detection of depth-dependent defects in carbon-fiber-reinforced polymer composites by terahertz time-domain spectroscopy[J]. Russian Journal of Nondestructive Testing, 2021, 57(5): 417-422. DOI: 10.1134/S1061830921050065
|
[4] |
ZHONG M, LIU B W, LI C, et al. Terahertz spectroscopy and imaging detection of defects in civil aircraft composites[J]. Journal of Spectroscopy, 2020, 2020: 2312936.
|
[5] |
刘增华, 吴育衡, 王可心, 等. 基于太赫兹时域光谱技术的陶瓷基复合材料缺陷检测成像研究[J]. 机械工程学报, 2023, 59(14): 33-42.
LIU Z H, WU Y H, WANG K X, et al. Research on defect detection and imaging of ceramic matrix composites based on terahertz time-domain spectroscopy[J]. Journal of Mechanical Engineering, 2023, 59(14): 33-42.
|
[6] |
BAO C, CAO J, HAO Q, et al. Dual-YOLO architecture from infrared and visible images for object detection[J]. Sensors, 2023, 23(6): 2934-2942. DOI: 10.3390/s23062934
|
[7] |
Kabouri A, Khabbazi A, Youlal H. Applied multiresolution analysis to infrared images for defects detection in materials[J]. NDT & E International, 2017, 92: 38-49.
|
[8] |
ZHANG J, WEI X, ZHANG L, et al. YOLO v7-ECA-PConv-NWD detects defective insulators on transmission lines [J]. Electronics, 2023, 12(18): 3969. DOI: 10.3390/electronics12183969
|
[9] |
ZHOU J, ZHANG B, YUAN X, et al. YOLO-CIR: The network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics & Technology, 2023, 131: 104703.
|
[10] |
CAO L, ZHENG X, FANG L. The semantic segmentation of standing tree images based on the YOLOv7 deep learning algorithm[J]. Electronics, 2023, 12(4): 929-936. DOI: 10.3390/electronics12040929
|
[11] |
ZHANG L, XIONG N, PAN X, et al. Improved object detection method utilizing YOLOv7-Tiny for unmanned aerial vehicle photographic imagery[J]. Algorithms, 2023, 16(11): 520-531. DOI: 10.3390/a16110520
|
[12] |
HUANG Z, WANG J, FU X, et al. DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection[J]. Information Sciences, 2020, 522: 241-258. DOI: 10.1016/j.ins.2020.02.067
|
[13] |
Diwan T, Anirudh G, Tembhurne J V. Object detection using YOLO: Challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275. DOI: 10.1007/s11042-022-13644-y
|
[14] |
LI J, YE J. Edge-YOLO: Lightweight infrared object detection method deployed on edge devices [J]. Applied Sciences, 2023, 13(7): 4402-4413. DOI: 10.3390/app13074402
|
[15] |
JIANG C, REN H, YE X, et al. Object detection from UAV thermal infrared images and videos using YOLO models[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112(3): 102912-102925.
|
[16] |
LI L, JIANG L, ZHANG J, et al. A complete YOLO-based ship detection method for thermal infrared remote sensing images under complex backgrounds[J]. Remote Sensing, 2022, 14(7): 1534-1535. DOI: 10.3390/rs14071534
|
[17] |
WEI Xuan, WEI Yun, LU Xiaobo. HD-YOLO: Using radius-aware loss function for head detection in top-view fisheye images[J]. Journal of Visual Communication and Image Representation, 2023, 90(3): 103715-103723.
|
[18] |
JIANG D, LI G, TAN C, et al. Semantic segmentation for multiscale target based on object recognition using the improved Faster-RCNN model[J]. Future Generation Computer Systems, 2021, 123: 94-104. DOI: 10.1016/j.future.2021.04.019
|
[19] |
JU M, LUO H, WANG Z, et al. The application of improved YOLOv3 in multi-scale target detection[J]. Applied Sciences, 2019, 9(18): 3775. DOI: 10.3390/app9183775
|
[20] |
孔松涛, 徐甄泽, 林星宇, 等. 基于改进YOLOv5算法的光伏组件红外热成像缺陷检测[J]. 红外技术, 2023, 45(9): 974-981. http://hwjs.nvir.cn/article/id/878e48bf-ac95-4d63-83ec-644f8885d842
KONG S T, XU Z Z, LIN X Y, et al. Infrared thermal imaging defect detection of photovoltaic modules based on improved YOLOv5 algorithm[J]. Infrared Technology, 2023, 45(9): 974-981. http://hwjs.nvir.cn/article/id/878e48bf-ac95-4d63-83ec-644f8885d842
|
[21] |
DU S, ZHANG B, ZHANG P, et al. FA-YOLO: An improved YOLO model for infrared occlusion object detection under confusing background[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1-10.
|
[22] |
孙建波, 王丽杰, 麻吉辉, 等. 基于改进YOLOv5s算法的光伏组件故障检测[J]. 红外技术, 2023, 45(2): 202-208. http://hwjs.nvir.cn/article/id/78e76f62-17bc-444b-bac5-c2bffbef819f
SUN J B, WANG L J, MA J H, et al Fault detection of photovoltaic modules based on improved YOLOv5s algorithm[J]. Infrared Technology, 2023, 45(2): 202-208. http://hwjs.nvir.cn/article/id/78e76f62-17bc-444b-bac5-c2bffbef819f
|
[23] |
MAO F, JING L, JIAN Y, et al. A grain boundary defects detection algorithm with improved localization accuracy based on efficient det[J]. Automatic Control and Computer Sciences, 2023, 57(1): 81-92.
|
[1] | BAI Xiaofeng, ZHANG Lei, YAN Shijun, QIAN Yunsheng, ZHANG Qin, SU Yue, CHENG Hongchang, CHENG Wei, LI Qi. Measurement of Signal to Noise Ratio of UV Image Intensifier Assembly[J]. Infrared Technology , 2024, 46(11): 1302-1307. |
[2] | QIU Xiangbiao, YANG Xiaoming, SUN Jianning, WANG Jian, CONG Xiaoqing, JIN Ge, ZENG Jinneng, ZHANG Zhengjun, PAN Kai, CHEN Xiaoqian. Status and Development of High Spatial Resolution Microchannel Plate[J]. Infrared Technology , 2024, 46(4): 460-466. |
[3] | LI Tingtao, GONG Yanni, ZENG Jinneng, CHANG Le, ZHAO Heng, TAN Hesheng, CHU Zhujun, CHEN Chao, ZHOU Shankun, LI Xiaofeng. Methods for Resolution Improvement of Super Ⅱ Image Intensifier[J]. Infrared Technology , 2023, 45(4): 335-341. |
[4] | LI Xiaofeng, HE Yanbin, CHANG Le, WANG Guangfan, XU Chuanping. Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers[J]. Infrared Technology , 2022, 44(8): 764-777. |
[5] | LI Xiaofeng, CHANG Le, LIU Beihong, XU Shiyu, DING Yibing. Analysis of Resolution Change of the Super Gen.Ⅱ Image Intensifier with Input Illumination Variation[J]. Infrared Technology , 2022, 44(4): 377-382. |
[6] | LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, ZHANG Qindong. High Performance Super Second Generation Image Intensifier and Its Further Development[J]. Infrared Technology , 2021, 43(9): 811-816. |
[7] | NI Li, QIAN Yunsheng, SUN Yunan, WANG Shengyun, XIE Qi. Measurement Technology of Signal-to-Noise of Low-Light-Level ICCD[J]. Infrared Technology , 2018, 40(11): 1081-1084. |
[8] | CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. A Study on Luminosity Features and Signal Noise Ratio of Space Target[J]. Infrared Technology , 2007, 29(12): 716-719. DOI: 10.3969/j.issn.1001-8891.2007.12.009 |
[9] | LI Hui, QIAN Yun-sheng, CHANG Ben-kang, LIU Lei, XIA Yang, LI Shi-yi. The Research of K Factor for Signal-to-noise Ratio of LLLIntensifier[J]. Infrared Technology , 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015 |
[10] | Finite Impulse Response Digital Filters in the Signal/Noise Testsets of Image Intensifiers[J]. Infrared Technology , 2002, 24(4): 12-15. DOI: 10.3969/j.issn.1001-8891.2002.04.004 |
1. |
吕行,富容国,常本康,郭欣,王芝. 透射式GaAs光电阴极性能提高以及结构优化. 物理学报. 2024(03): 250-256 .
![]() |