LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, ZHANG Qindong. High Performance Super Second Generation Image Intensifier and Its Further Development[J]. Infrared Technology , 2021, 43(9): 811-816.
Citation: LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, ZHANG Qindong. High Performance Super Second Generation Image Intensifier and Its Further Development[J]. Infrared Technology , 2021, 43(9): 811-816.

High Performance Super Second Generation Image Intensifier and Its Further Development

More Information
  • Received Date: September 21, 2020
  • Revised Date: November 10, 2020
  • This paper presents the technical characteristics and performance of high performance super second generation image intensifier, compares it with ordinary super second generation image intensifier, and puts forward the technical measures to further improve the performance of high performance super second generation image intensifier. Super second generation image intensifier is a kind of image intensifier with higher performance over second generation image intensifier. It was developed by application of new technology, new craft and new material on the base of the second generation image intensifier. After nearly 30 years of development, its performance has been greatly improved. In recent years, due to the use of grating window on the super second generation image intensifier, the sensitivity of the Na2KSb photocathode is over 1000 μA·lm-1, and the resolution is above 17 lp·mm-1 on the illumination of 10-4 lx. It would be predicted that the sensitivity of Na2KSb photocathode will reach 1350-1800 μA·lm-1, and the signal-to-noise ratio will reach 35-40 by further improving the fabrication process of Na2KSb film and optimizing the structure of grating. It would be predicted that the resolution will reach 81 lp·mm-1through use of microchannel plate of 4 (m diameter and fiber optical plate of 3 μm diameter, the resolution is likely to reach 81 lp·mm-1.
  • [1]
    LIU Qiankun, LIU Lei, DENG Yubin, et al. Apparent distance theory vision for low-light-level night vision system based on noise factor[J]. Optical and Quantum Electronics, 2017, 49(7): 249-264. DOI: 10.1007/s11082-017-1087-3
    [2]
    金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报, 2020, 49(4): 0411001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm

    JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-view low-light-level night vision system[J]. Acta Photonica Sinica, 2020, 49(4): 0411001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm
    [3]
    LU Nianhua, YANG Yigang, LIU Jingwen, et al. Neutron detector design based on ALD coated MCP[J]. Physics Procedia, 2012, 26: 110-115. http://www.onacademic.com/detail/journal_1000035076227310_cf7b.html
    [4]
    Pranav Gupta, Luca Cultrera, Ivan Bazarov. Monte Carlo simulations of electron photoemission from cesium antimonide[J]. Journal of Applied Physics, 2017, 121(21): 215702. DOI: 10.1063/1.4984263
    [5]
    Dimitrov D A, Bell G I, Smedley J, et al. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes[J]. Journal of Applied Physics, 2017, 122(16): 165303. DOI: 10.1063/1.4996568
    [6]
    Siddharth Karkare, Dimitre Dimitrov, William Schaff, et al. Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes[J]. Journal of Applied Physics, 2013, 113(10): 104904. DOI: 10.1063/1.4794822
    [7]
    Sinor T W, Estera J P. An analysis of electron scattering in the thin dieelectric films used as ion barriers in generation Ⅲ image tubes[C]//SPIE, 2003, 4796: 23-32.
    [8]
    Estera J P, FORD C E, Giordana A, et al. High reliability GaAs image intensifier with unfilmed microchannel plate[C]//SPIE, 1999, 3749: 713-714.
    [9]
    BOSCH L A. Image intensifier tube performance is what matters[C]//SPIE, 2000, 4128: 65-78.
    [10]
    Gert Nutzel, Pascal Lavout. Sem-transparent photocathode with improved absorption rate: US, 9960004B2[P]. 2018-005-01.
    [11]
    格特·怒茨泽尔, 帕斯卡尔·拉武特. 具有改善吸收率的半透明的光电阴极: CN, 104781903A[P]. 2015-07-15.

    Gert Nutzel, Pascal Lavout. Sem-transparent photocathode with improved absorption rate: CN, 104781903A[P]. 2015-07-15.
    [12]
    钱芸生, 常本康, 童默颖, 等. 像增强器噪声频谱特性测试技术研究[J]. 光学学报, 2003, 23(1): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200301015.htm

    QIAN Yunsheng, CHANG Benkang, TONG Moying, et al. Frequency spectrum measurement of noise of image intensifiers[J]. ACTA Optica Sinica, 2003, 23(1): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200301015.htm
    [13]
    崔东旭, 郑少成, 邱亚峰, 等. 微通道板的输出信噪比特性研究[J]. 真空科学与技术学报, 2012, 32(6): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201206005.htm

    CUI Dongxu, ZHENG Shaocheng, QIU Yafeng, et al. Output signal-to-noise ratio characteristics of microchannel plate[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(6): 468-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201206005.htm
    [14]
    李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZEN Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [15]
    李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm

    LI Xiaofeng, LI Tingtao, ZEN Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2019, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
    [16]
    向世明. 双近贴聚焦超二代微光像增强器分辨力理论极限问题研究[J]. 应用光学, 2008, 29(3): 351-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200803007.htm

    XIANG Shiming. Study on theory limitation of resolution for double proximity focued super second generation image intensifier[J]. Applied Optics, 2008, 29(3): 351-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200803007.htm
    [17]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999.

    XIANG Shiming, NI Guoqiang. Principle of Optoelectronic Imaging Device[M]. Beijing: National Defence Industry Press, 1999.
    [18]
    潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202006001.htm

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202006001.htm
  • Cited by

    Periodical cited type(12)

    1. 邱祥彪,杨晓明,孙建宁,王健,丛晓庆,金戈,曾进能,张正君,潘凯,陈晓倩. 高空间分辨微通道板现状及发展. 红外技术. 2024(04): 460-466 . 本站查看
    2. 刘宇,时荔蕙. 像增强器性能梯次及发展路线研究. 红外与毫米波学报. 2023(04): 427-433 .
    3. 曾进能,杨琼连,龚燕妮,李廷涛,王乙瑾,李晓露,赵恒,马怀超,徐传平,吴艳娟,汪云,李耀斌,须恃瑜,刘倍宏,徐鳕娇,李荣喜. 超二代微光像增强器性能随工作时间的影响研究. 红外技术. 2023(08): 869-875 . 本站查看
    4. 孙磊,金东东,纪春恒,裴崇雷,安鸿波,段恩悦. 基于增强型CCD探测器的距离选通三维成像不均匀性补偿方法. 兵工学报. 2023(08): 2495-2502 .
    5. 李亚情,左加宁,李晓露,周盛涛,褚祝军,杜培德,王光凡. 自动门控像增强器温度补偿技术研究. 红外技术. 2023(10): 1126-1131 . 本站查看
    6. 李晓峰,常乐,刘倍宏,须恃瑜,丁易冰. 超二代像增强器分辨力随输入照度变化研究. 红外技术. 2022(04): 377-382 . 本站查看
    7. 李亚情,周盛涛,王光凡,褚祝军,杜培德,朱文锦,李晓露,左加宁,朱世聪. 普通高压电源超二代微光像增强器亮度增益温度特性研究. 红外技术. 2022(08): 804-810 . 本站查看
    8. 李晓峰,何雁彬,常乐,王光凡,徐传平. 超二代与三代像增强器性能的比较研究. 红外技术. 2022(08): 764-777 . 本站查看
    9. 张益军. 半导体光电阴极的研究进展. 红外技术. 2022(08): 778-791 . 本站查看
    10. 邱祥彪,闵信杰,金戈,孙建宁,王健,丛晓庆,张正君,徐昭,潘凯,任玲,张振,乔芳建,聂慧君,黄国瑞,陈晓倩,胡泽训,林焱剑,刘丹,杨晓明. 采用干法刻蚀进行微通道板扩口理论模型研究. 红外技术. 2022(08): 818-823 . 本站查看
    11. 孙磊,金东东,纪春恒,裴崇雷,安鸿波. 基于抛物线包络反演的距离选通三维成像方法. 兵工学报. 2022(08): 1868-1873 .
    12. 杨武丽,来悦颖,张晓辉,焦岗成,李世龙,郭欣,贾甜甜. 微光像增强器常用荧光粉性能研究. 应用光学. 2022(06): 1207-1216 .

    Other cited types(4)

Catalog

    Article views (319) PDF downloads (225) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return