Citation: | LI Xiaofeng, HE Yanbin, CHANG Le, WANG Guangfan, XU Chuanping. Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers[J]. Infrared Technology , 2022, 44(8): 764-777. |
[1] |
程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
|
[2] |
潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
|
[3] |
田金生. 低照度微光传感器的最新进展[J]. 红外技术, 2013, 35(9): 527-534.
TIAN Jinsheng. New development of low level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534.
|
[4] |
常本康. 多碱光电阴极[M]. 北京: 兵器工业出版社, 2001.
CHANG Benkang. Multi-Alkali Photocathode[M]. Beijing: Ordnance Industry Press, 2001.
|
[5] |
李晓峰, 刘如彪, 赵学峰. 多碱阴极光电发射机理研究[J]. 光子学报, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
LI Xiaofeng, LIU Rubiao, ZHAO Xuefeng. Photoemission mechanism of multi-alkali cathode[J]. Acta Photonica Sinica, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
|
[6] |
李晓峰, 陆强, 李莉, 等. 超二代像增强器多碱阴极膜厚测量研究[J]. 光子学报, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
LI Xiaofeng, LU Qiang, LI Li, et al. Thickness measurement of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
|
[7] |
李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence [J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
|
[8] |
常本康. GaAs光电阴极[M]. 北京: 科学出版社, 2001.
CHANG Benkang. GaAs Photocathode[M]. Beijing: Science Press, 2001.
|
[9] |
常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.
CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.
|
[10] |
焦岗成, 张锴珉, 张益军, 等. 改进"yo-yo"Cs/O交替激活方法对GaAs光阴极稳定性影响[J]. 光子学报, 2022, 51(2): 0212001.
JIAO Gangcheng, ZHANG Kaimin, ZHANG Yijun, et al. Effect of improved 'yo-yo' Cs/O alternate activation method on stability of GaAs photocathode[J]. Acta Photonica Sinica, 2022, 51(2): 0212001.
|
[11] |
方城伟, 张益军, 荣敏敏, 等. GaAs光电阴极制备工艺中表面污染的微区分析[J]. 光子学报, 2019, 48(9): 0925001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201909006.htm
FANG Chenwei, ZHANG Yijun, RONG Minmin, et al. Micro-area analysis of surface contaminations of GaAs photocathode[J]. Acta Photonica Sinica, 2019, 48(9): 0925001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201909006.htm
|
[12] |
LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of Resolution between Super Gen. Ⅱ and Gen. Ⅲ Image Intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 0904003-1. DOI: 10.3788/gzxb20215009.0904003
|
[13] |
李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
|
[14] |
邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
QIU Yafeng, YAN Wuling, HUA Sangtun. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
|
[15] |
Hoenderken T H, Hagen C W, Nutzel G O, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vacuum, Science and Technology, 2001, 19(30): 843-850.
|
[16] |
Photonis Nerthlands B V. Fiber optic phosphor screen comprising angular filter: 8933419B2, USA[P]. 2015-01-13.
|
[17] |
李晓峰, 常乐, 邱永生, 等. 微通道板近紫外量子效率测量及成像研究[J]. 光子学报, 2020, 49(3): 0325001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003021.htm
LI Xiaofeng, CHANG Le, QIU Yongsheng, et al. Measurement of quantum yield and image of microchannel plate in near ultraviolet band[J]. Acta Photonica Sinica, 2020, 49(3): 0325001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003021.htm
|
[18] |
李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
|
[19] |
李晓峰, 常乐, 李金沙, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
LI Xiaofeng, CHANG Le, LI Jinsha, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
|
[20] |
李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响研究[J]. 光子学报, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
LI Xiaofeng, ZHANG Zhenjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
|
[21] |
李晓峰, 张景文, 高宏凯, 等. 三代管MCP离子阻挡膜研究[J]. 光子学报, 2001, 30(12): 1496-1499.
LI Xiaofeng, ZHANG Jingwen, GAO Hongkai, et al. Ion barrier of MCP in the third generation image intensifier[J]. Acta Photonica Sinica, 2001, 30(12): 1496-1499.
|
[22] |
杨晓军, 李丹, 乔凯, 等. 防离子反馈微通道板表面碳污染去除的试验研究[J]. 红外技术, 2020, 42(8): 747-751. http://hwjs.nvir.cn/article/id/hwjs202008007
YANG Xiaojun, LI Dan, QIAO Kai, et al. Experimental study of C pollution removal from microchannel plate with ion barrier film[J]. Infrared Technology, 2020, 42(8): 509-518. http://hwjs.nvir.cn/article/id/hwjs202008007
|
[23] |
Jan Van Spijker. Ion Barrier Membrane for Use in a Vacuum Tube Using Electron Multiplying, an Electron Multiplying Structure for Use in a Vacuum Tube Using Electron Multiplying as well as a Vacuum Tube Using Electron Multiplying Provided with Such an Electron Multiplying Structure. USA, 8471444B2[P]. 2013-01-25.
|
[24] |
李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 0304001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica, 2022, 51(3): 0304001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
|
[25] |
周异松. 电真空成像器件及理论分析[M]. 北京: 国防工业出版社, 1989.
ZHOU Yisong. Electric Vacuum Imaging Device and Its Theoretical Analysis[M]. Beijing: National Defense Industry Press, 1989.
|
[26] |
向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.
XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Device[M]. Beijing: National Defense Industry Press, 2006.
|
[27] |
李晓峰, 姜云龙, 李靖雯, 等. Cs2Te紫外光电阴极带外光谱响应研究[J]. 红外技术, 2015, 37(12): 1068-1073. http://hwjs.nvir.cn/article/id/hwjs201512015
LI Xiaofeng, JIANG Yunlong, LI Jingwen, et al. Study on spectral response beyond cut off of Cs2Te ultra violet photo cathode[J]. Infrared Technology, 2015, 37(12): 1068-1073. http://hwjs.nvir.cn/article/id/hwjs201512015
|
[28] |
李晓峰, 常乐, 刘蓓宏, 等. 超二代像增强器分辨力随输入照度变化研究[J]. 红外技术, 2022, 44(4): 378-382. http://hwjs.nvir.cn/article/id/61644d40-dd96-4ccd-ab1c-12d46bf5bfb8
LI Xiaofeng, CHANG Le, LIU Beihong, et al. Analysis of resolution change of the super Gen. Ⅱ image intensifier with input illumination variation[J]. Infrared Technology, 2022, 44(4): 378-382. http://hwjs.nvir.cn/article/id/61644d40-dd96-4ccd-ab1c-12d46bf5bfb8
|
[29] |
董煜辉, 黄丽书, 王俊, 等. 微光像增强器试验方法: WJ 2091-1992[S]. 北京: 中国标准出版社, 1992.
DONG Yuhui, HUANG Lishu, WANG Jun, et al. Test Method of Image Intensifier: WJ2091-1992[S]. Beijing: Standards Press of China, 1992.
|
[30] |
董煜辉, 黄丽书, 王俊, 等. 像增强器通用规范: GJB 2000A-2020[S]. 北京: 中国标准出版社, 2020.
DONG Yuhui, HUANG Lishu, WANG Jun, et al. General Specification of Image Intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
|
[31] |
李晓峰, 李娇娇, 李金沙, 等. 超二代及三代像增强器不同响应波段的参数测量及比较[J]. 光子学报, 2021, 50(2): 0225001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102013.htm
LI Xiaofeng, LI Jiaojiao, LI Jinsha, et al. Measure and comparison between the second-generation and the third-generation image intensifier within the different region of wavelength[J]. Acta Photonica Sinica, 2021, 50(2): 0225001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102013.htm
|
[32] |
李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
|
[33] |
Nutzel G, Lavout P. Sem-transparent Photocathode with Improved Absorption Tate: US, 9960004B2[P]. 2018-05-01.
|
[34] |
格特·怒茨泽尔, 帕斯卡尔·拉武特. 具有改善吸收率的半透明的光电阴极: CN, 104781903A[P]. 2015-07-15.
Nutzel G, Lavout P. Sem-transparent photocathode with improved absorption rate: CN, 104781903A[P]. 2015-07-15.
|
[1] | DU Peide, CHU Zhujun, ZENG Jinneng, ZHU Wenjin, ZHOU Shengtao, LI Xiaolu, LI Yaqing, ZUO Jianing. EMC Design and Implementation for Image Intensifiers[J]. Infrared Technology , 2023, 45(6): 658-662. |
[2] | FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194. |
[3] | YAN Bo, NI Xiaobing, ZHI Qiang, LIU Jiayin, SONG Haihao, LI Mengyi. Local Bright-light Protection for Low-Light-Level Image Intensifier Based on Auto-gating Power Supply[J]. Infrared Technology , 2022, 44(9): 951-957. |
[4] | TANG Qin, YANG Zhuang, SONG Haitao, YE Hongwei, ZHANG Xingyue. Stress Analysis of the Plastic Shells of Image Intensifiers[J]. Infrared Technology , 2021, 43(5): 483-489. |
[5] | YAN Lei, SHI Feng, SHAN Cong, CHENG Hongchang, GUO Xin, LIU Hui, LUO Yang, ZHANG Xiaohui. Limiting Resolution of AlGaN Photocathode Image Intensifier Tube[J]. Infrared Technology , 2020, 42(8): 729-734. |
[6] | WANG Xiaonan, LI Wenjun, LI Jiaqi, ZHENG Yongjun. An Apparent Temperature Difference Generator for Performance Testing of Thermal Imagers[J]. Infrared Technology , 2018, 40(8): 749-753. |
[7] | YANG Ye, NI Xiaobing, YAN Bo, ZHI Qiang, LI Junguo. Study on the Relationship between Image Intensifier Cathode Pulse and Plate Brightness Stability[J]. Infrared Technology , 2018, 40(7): 691-694. |
[8] | NI Xiaobing, YANG Ye, YAN Bo, ZHI Qiang, LI Junguo. Research on Photocathode Protection Method of the Three-Generation Image Intensifier[J]. Infrared Technology , 2018, 40(5): 492-495. |
[9] | NI Xiaobing, YAN Bo, YANG Ye, YANG Shuning, ZHI Qiang, LI Junguo, YAO Ze, DENG Guangxu. Study of Image Intensifier SNR Based on Auto Gated Power Supply[J]. Infrared Technology , 2017, 39(3): 284-287. |
[10] | LUO Guan-ping, HE Kai-yuan, WANG Zhi-hong, TIAN Jin-sheng, YUAN Xiaopeng. The Development and Application of the Second Generation Image Intensifier Tubes[J]. Infrared Technology , 2000, 22(2): 7-10. DOI: 10.3969/j.issn.1001-8891.2000.02.002 |
1. |
宋海浩,延波,倪小兵,智强,李梦依,刘佳音,任莹楠,司可,张琳琳. 一种像增强器阴极高重频选通电路的设计. 应用光学. 2022(06): 1187-1195 .
![]() |