Volume 47 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LI Xiaofeng, HE Yanbin, CHANG Le, WANG Guangfan, XU Chuanping. Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers[J]. Infrared Technology , 2022, 44(8): 764-777.
Citation: LI Xiaofeng, HE Yanbin, CHANG Le, WANG Guangfan, XU Chuanping. Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers[J]. Infrared Technology , 2022, 44(8): 764-777.

Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers

  • Received Date: 2022-05-24
  • Rev Recd Date: 2022-06-23
  • Publish Date: 2022-08-20
  • Super-second-generation and third-generation image intensifiers are two types of image intensifiers that use different technologies. Super-second-generation image intensifiers employ a Na2KSb(Cs) photocathode, whereas third-generation image intensifiers employ a GaAs photocathode. Third-generation image intensifiers employ higher cathode voltages than those employed by super-second-generation image intensifiers. In addition, third-generation image intensifiers employ an antireflection coating between the glass input window and GaAs photocathode; however, this is not employed in super second-generation image intensifiers. Furthermore, third-generation image intensifiers employ ion barriers on their MCP(microchannel plate), whereas super-second-generation image intensifiers do not. In terms of limiting resolution, despite the small initial electron velocity, narrow exit angle distribution, and high cathode voltage of the third-generation image intensifiers, the limiting resolutions of the two types of image intensifiers are the same; the advantages of the GaAs photocathode of the third-generation image intensifiers have not been introduced under the existing limiting resolution level. In terms of signal-to-noise ratio, the GaAs photocathode has a higher cathode sensitivity, normally more than twice that of the super-second-generation image intensifier. Thus, theoretically, the third-generation image intensifiers have signal-to-noise ratios that are 1.4 times those of the super-second-generation image intensifiers. However, the two types of image intensifiers are basically the same owing to the influence of higher cathode voltage and ion barrier transmittance and the advantage of not introducing the high sensitivity of the GaAs photocathode of the third-generation image intensifiers. In terms of gain, although the third-generation image intensifiers have higher cathode sensitivity and cathode voltage, the super-second-generation image intensifiers compensate for the shortcomings of cathode sensitivity and cathode voltage by increasing the working voltage of the microchannel plate. Therefore, in terms of the existing image intensifier gain, the gains of the two types of image intensifiers are identical. In terms of equivalent background illumination(EBI), owing to the higher sensitivity of the GaAs photocathode, the third-generation image intensifiers can obtain lower equivalent background illumination under the same photocathode dark current. Therefore, the third-generation image intensifiers have higher initial contrast than that of the super-second-generation image intensifiers. The higher the initial contrast of the input image, the higher the contrast of the output image. In terms of halo, because the photocathode of the third-generation image intensifiers has high sensitivity and an ion barrier film, theoretically, the third-generation image intensifiers have higher halo brightness than that of the super-second-generation image intensifiers. However, in actual situation, the halo brightness levels of the two types of image intensifiers are basically the same. In terms of stray light, the GaAs photocathode has an antireflection coating; thus, the stray light is lower than that of the super-second-generation image intensifier, so the imaging of the third-generation image intensifier is clearer and the sense of gradation is better. In terms of spectral response beyond the long-wavelength threshold, because the spectral responses beyond the long-wavelength threshold of the super-second-generation image intensifiers are higher than those of the third-generation image intensifiers, the super-second-generation image intensifiers have better imaging performance than that of the third-generation image intensifier under supplementary illumination using the near-infrared waveband. For example, without the presence of any light, the super-second-generation image intensifiers can obtain better images at a supplementary illumination of 980 nm wavelength, whereas the third-generation image intensifiers cannot. In terms of the resolution of low illumination, the super-second- and third-generation image intensifiers with similar performance parameters have the same low luminance resolution. It should be noted that this conclusion was obtained under the test conditions of a standard A light source. When the actual environmental emission spectrum distribution is different from that of a standard illuminant A, the low illumination resolutions of the two types of image intensifiers are different. Photocathode sensitivity is a parameter of the photocathode and not of the image intensifier. Thus, the performances of the two types of image intensifiers cannot be compared in terms of photocathode sensitivity. The difference between the super-second and third-generations cannot be understood using the meaning of "generation; " their differences do not lie in the meaning of "generation."
  • loading
  • [1]
    程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
    [2]
    潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [3]
    田金生. 低照度微光传感器的最新进展[J]. 红外技术, 2013, 35(9): 527-534.

    TIAN Jinsheng. New development of low level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534.
    [4]
    常本康. 多碱光电阴极[M]. 北京: 兵器工业出版社, 2001.

    CHANG Benkang. Multi-Alkali Photocathode[M]. Beijing: Ordnance Industry Press, 2001.
    [5]
    李晓峰, 刘如彪, 赵学峰. 多碱阴极光电发射机理研究[J]. 光子学报, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm

    LI Xiaofeng, LIU Rubiao, ZHAO Xuefeng. Photoemission mechanism of multi-alkali cathode[J]. Acta Photonica Sinica, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
    [6]
    李晓峰, 陆强, 李莉, 等. 超二代像增强器多碱阴极膜厚测量研究[J]. 光子学报, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm

    LI Xiaofeng, LU Qiang, LI Li, et al. Thickness measurement of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
    [7]
    李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm

    LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence [J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
    [8]
    常本康. GaAs光电阴极[M]. 北京: 科学出版社, 2001.

    CHANG Benkang. GaAs Photocathode[M]. Beijing: Science Press, 2001.
    [9]
    常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.

    CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.
    [10]
    焦岗成, 张锴珉, 张益军, 等. 改进"yo-yo"Cs/O交替激活方法对GaAs光阴极稳定性影响[J]. 光子学报, 2022, 51(2): 0212001.

    JIAO Gangcheng, ZHANG Kaimin, ZHANG Yijun, et al. Effect of improved 'yo-yo' Cs/O alternate activation method on stability of GaAs photocathode[J]. Acta Photonica Sinica, 2022, 51(2): 0212001.
    [11]
    方城伟, 张益军, 荣敏敏, 等. GaAs光电阴极制备工艺中表面污染的微区分析[J]. 光子学报, 2019, 48(9): 0925001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201909006.htm

    FANG Chenwei, ZHANG Yijun, RONG Minmin, et al. Micro-area analysis of surface contaminations of GaAs photocathode[J]. Acta Photonica Sinica, 2019, 48(9): 0925001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201909006.htm
    [12]
    LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of Resolution between Super Gen. Ⅱ and Gen. Ⅲ Image Intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 0904003-1. doi:  10.3788/gzxb20215009.0904003
    [13]
    李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [14]
    邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm

    QIU Yafeng, YAN Wuling, HUA Sangtun. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
    [15]
    Hoenderken T H, Hagen C W, Nutzel G O, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vacuum, Science and Technology, 2001, 19(30): 843-850.
    [16]
    Photonis Nerthlands B V. Fiber optic phosphor screen comprising angular filter: 8933419B2, USA[P]. 2015-01-13.
    [17]
    李晓峰, 常乐, 邱永生, 等. 微通道板近紫外量子效率测量及成像研究[J]. 光子学报, 2020, 49(3): 0325001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003021.htm

    LI Xiaofeng, CHANG Le, QIU Yongsheng, et al. Measurement of quantum yield and image of microchannel plate in near ultraviolet band[J]. Acta Photonica Sinica, 2020, 49(3): 0325001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003021.htm
    [18]
    李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm

    LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
    [19]
    李晓峰, 常乐, 李金沙, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm

    LI Xiaofeng, CHANG Le, LI Jinsha, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
    [20]
    李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响研究[J]. 光子学报, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm

    LI Xiaofeng, ZHANG Zhenjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
    [21]
    李晓峰, 张景文, 高宏凯, 等. 三代管MCP离子阻挡膜研究[J]. 光子学报, 2001, 30(12): 1496-1499.

    LI Xiaofeng, ZHANG Jingwen, GAO Hongkai, et al. Ion barrier of MCP in the third generation image intensifier[J]. Acta Photonica Sinica, 2001, 30(12): 1496-1499.
    [22]
    杨晓军, 李丹, 乔凯, 等. 防离子反馈微通道板表面碳污染去除的试验研究[J]. 红外技术, 2020, 42(8): 747-751. http://hwjs.nvir.cn/article/id/hwjs202008007

    YANG Xiaojun, LI Dan, QIAO Kai, et al. Experimental study of C pollution removal from microchannel plate with ion barrier film[J]. Infrared Technology, 2020, 42(8): 509-518. http://hwjs.nvir.cn/article/id/hwjs202008007
    [23]
    Jan Van Spijker. Ion Barrier Membrane for Use in a Vacuum Tube Using Electron Multiplying, an Electron Multiplying Structure for Use in a Vacuum Tube Using Electron Multiplying as well as a Vacuum Tube Using Electron Multiplying Provided with Such an Electron Multiplying Structure. USA, 8471444B2[P]. 2013-01-25.
    [24]
    李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 0304001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm

    LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica, 2022, 51(3): 0304001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
    [25]
    周异松. 电真空成像器件及理论分析[M]. 北京: 国防工业出版社, 1989.

    ZHOU Yisong. Electric Vacuum Imaging Device and Its Theoretical Analysis[M]. Beijing: National Defense Industry Press, 1989.
    [26]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.

    XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Device[M]. Beijing: National Defense Industry Press, 2006.
    [27]
    李晓峰, 姜云龙, 李靖雯, 等. Cs2Te紫外光电阴极带外光谱响应研究[J]. 红外技术, 2015, 37(12): 1068-1073. http://hwjs.nvir.cn/article/id/hwjs201512015

    LI Xiaofeng, JIANG Yunlong, LI Jingwen, et al. Study on spectral response beyond cut off of Cs2Te ultra violet photo cathode[J]. Infrared Technology, 2015, 37(12): 1068-1073. http://hwjs.nvir.cn/article/id/hwjs201512015
    [28]
    李晓峰, 常乐, 刘蓓宏, 等. 超二代像增强器分辨力随输入照度变化研究[J]. 红外技术, 2022, 44(4): 378-382. http://hwjs.nvir.cn/article/id/61644d40-dd96-4ccd-ab1c-12d46bf5bfb8

    LI Xiaofeng, CHANG Le, LIU Beihong, et al. Analysis of resolution change of the super Gen. Ⅱ image intensifier with input illumination variation[J]. Infrared Technology, 2022, 44(4): 378-382. http://hwjs.nvir.cn/article/id/61644d40-dd96-4ccd-ab1c-12d46bf5bfb8
    [29]
    董煜辉, 黄丽书, 王俊, 等. 微光像增强器试验方法: WJ 2091-1992[S]. 北京: 中国标准出版社, 1992.

    DONG Yuhui, HUANG Lishu, WANG Jun, et al. Test Method of Image Intensifier: WJ2091-1992[S]. Beijing: Standards Press of China, 1992.
    [30]
    董煜辉, 黄丽书, 王俊, 等. 像增强器通用规范: GJB 2000A-2020[S]. 北京: 中国标准出版社, 2020.

    DONG Yuhui, HUANG Lishu, WANG Jun, et al. General Specification of Image Intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
    [31]
    李晓峰, 李娇娇, 李金沙, 等. 超二代及三代像增强器不同响应波段的参数测量及比较[J]. 光子学报, 2021, 50(2): 0225001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102013.htm

    LI Xiaofeng, LI Jiaojiao, LI Jinsha, et al. Measure and comparison between the second-generation and the third-generation image intensifier within the different region of wavelength[J]. Acta Photonica Sinica, 2021, 50(2): 0225001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102013.htm
    [32]
    李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189

    LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
    [33]
    Nutzel G, Lavout P. Sem-transparent Photocathode with Improved Absorption Tate: US, 9960004B2[P]. 2018-05-01.
    [34]
    格特·怒茨泽尔, 帕斯卡尔·拉武特. 具有改善吸收率的半透明的光电阴极: CN, 104781903A[P]. 2015-07-15.

    Nutzel G, Lavout P. Sem-transparent photocathode with improved absorption rate: CN, 104781903A[P]. 2015-07-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (794) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return