Citation: | LI Xiaofeng, CHANG Le, LIU Beihong, XU Shiyu, DING Yibing. Analysis of Resolution Change of the Super Gen.Ⅱ Image Intensifier with Input Illumination Variation[J]. Infrared Technology , 2022, 44(4): 377-382. |
[1] |
李晓峰, 李娇娇, 李金沙, 等. 超二代及三代像增强器不同响应波段的参数测量及比较[J]. 光子学报, 2020, 50(2): 0225001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102013.htm
LI Xiaofeng, LI Jiaojiao, LI Jinsha, et al. Measure and comparison between the Second-generation and the third-generation image intensifier within the different region of wavelength[J]. Acta Photonica Sinica, 2021, 50(2): 0225001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102013.htm
|
[2] |
李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 0304001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
LI Xiaofeng, DU Mulin, XU Chuanping, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinica, 2022, 51(3): 0304001-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202203011.htm
|
[3] |
微光像增强器试验方法: WJ 2091-1992 [S]. 北京: 中国标准出版社, 1992.
Test Method of Image Intensifier: WJ 2091-1992 [S]. Beijing: Standards Press of China, 1992.
|
[4] |
像增强器通用规范: GJB 2000A-2020[S]. 北京: 中国标准出版社, 2020.
General Specification of Image Intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
|
[5] |
李晓峰, 常乐, 赵恒, 等. 超二代与三代像增强器低照度分辨力的比较[J]. 光子学报, 2021, 50(9): 0904003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of resolution between super gen. Ⅱ and gen. Ⅲ image intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 0904003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
|
[6] |
LU Nianhua, YANG Yigang, LV Jingwen, et al. Neutron detector design based on ALD coated MCP[J]. Physics Procedia, 2012, 26: 110-115.
|
[7] |
YAN Baojun, LIU Shulin, HENG Yuekun, et al. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates[J]. Nanoscale Research Letters, 2015, 10(1): 1-11. DOI: 10.1186/1556-276X-10-1
|
[8] |
LU Nianhua, YANG Yigang, LIU Jingwen, et al. Neutron detector design based on ALD coated MCP[J]. Physics Procedia, 2012, 26: 110-115.
|
[9] |
李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
|
[10] |
李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
|
[11] |
Hoenderken T H, Hagen C W, Barth J E, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vacuum Science & Technology B, 2001, 19(3): 843-850.
|
[12] |
陶禹, 金伟其, 王瑶, 等. 高性能近贴式像增强器的调制传递函数分析[J]. 光子学报, 2016, 45(6): 0604003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201606027.htm
TAO Yu, JIN Weiqi, WANG Yao, et al. The MTF analysis of high performance proximity image intensifier[J]. Acta Photonica Sinica, 2016, 45(6): 0604003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201606027.htm
|
[13] |
邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
QIU Yafeng, YAN Wuling, HUA Sangtun. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
|
[14] |
Alla Shymanska. Numerical analysis of electron optical system with microchannel plate[J]. Journal of Computational Electronics, 2011, 10(3): 57-60.
|
[15] |
钱芸生, 常本康, 童默颖, 等. 微光像增强器噪声频谱测试技术研究[J]. 光学学报, 2003, 23(1): 67 -70. DOI: 10.3321/j.issn:0253-2239.2003.01.015
QIAN Yunsheng, CHANG Benkang, TONG Moying. Frequency spectrum measurement of noise of image intensifiers[J]. Acta Optica Sinica, 2003, 23(1): 67-70. DOI: 10.3321/j.issn:0253-2239.2003.01.015
|
[16] |
李晓峰, 李金沙, 常乐, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
LI Xiaofeng, LI Jinsha, CHANG Le, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
|
[17] |
Pranav Gupta, Luca Cultrera, Ivan Bazarov. Monte Carlo simulations of electron photoemission from cesium antimonide[J]. Journal of Applied Physics, 2017, 121(21): 215702. DOI: 10.1063/1.4984263
|
[18] |
李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
|
[19] |
Dimitrov D, Bell G, Smedley J, et al. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes[J]. Journal of Applied Physics, 2017, 122(16): 165303. DOI: 10.1063/1.4996568
|
[20] |
Nutzel G, Lavout P. Sem-transparent Photocathode with Improved Absorption Tate: US, 9960004B2[P]. 2018-05-01.
|
[21] |
格特⋅怒茨泽尔, 帕斯卡尔⋅拉武特. 具有改善吸收率的半透明的光电阴极: CN, 104781903A[P]. 2015-07-15.
Nutzel G, Lavout P. Sem-transparent photocathode with improved absorption rate: CN, 9960004B2[P]. 2015-07-15.
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[3] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[4] | LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801. |
[5] | DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764. |
[6] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[7] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[8] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |
1. |
赵洪山,王惠东,刘婧萱,杨伟新,李忠航,林诗雨,余洋,吕廷彦. 考虑局部纹理特征和全局温度分布的电力设备红外图像超分辨率重建方法. 电力系统保护与控制. 2025(02): 89-99 .
![]() | |
2. |
徐浙君. 基于优化深度学习的低照度图像超分辨率重建方法的研究. 科技通报. 2024(04): 39-43+53 .
![]() |