Citation: | QIU Xiangbiao, YANG Xiaoming, SUN Jianning, WANG Jian, CONG Xiaoqing, JIN Ge, ZENG Jinneng, ZHANG Zhengjun, PAN Kai, CHEN Xiaoqian. Status and Development of High Spatial Resolution Microchannel Plate[J]. Infrared Technology , 2024, 46(4): 460-466. |
[1] |
潘京生. 微通道板及其主要特征性能[J]. 应用光学, 2004, 25(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200405008.htm
PAN Jingsheng. Microchannel plates and its main characteristics[J]. Journal of Applied Optics, 2004, 25(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200405008.htm
|
[2] |
潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
|
[3] |
程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
|
[4] |
李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
|
[5] |
Bosch L A. Image intensifier tube performance is what matters[C]//Image Intensifiers and Applications Ⅱ of SPIE, 2000, 4128: 65-78.
|
[6] |
Haque M J, Muntjir M. Night vision technology: an overview[J]. International Journal of Computer Applications, 2017, 167(13): 37-42. DOI: 10.5120/ijca2017914562
|
[7] |
Estrera J P, Ostromek T E, Bacarella A V, et al. Advanced image intensifier night vision system technologies: status and summary 2002[C]//Low-Light-Level and Real-Time Imaging Systems, Components, and Applications of SPIE, 2003, 4796: 49-59.
|
[8] |
Photonis Corp. 4G+ Image Intensifier Tube [EB/OL]. https://www.photonis.com/system/files/2021-05/210507%20Leaflet%2042B_0.pdf 2022-6-15.
|
[9] |
L3Harris Technologies, Inc. AN/PVS-31C–BNVD [EB/OL]. https://ww.l3harris.com/sites/default/files/2020-09/cs-ivs-an-pvs-31c-bnvdatasheet_0.pdf. 2022-6-15.
|
[10] |
郭雅宁. 微通道板输入面光子反射特性研究[D]. 长春: 长春理工大学, 2018.
GUO Yaning. Study on Photon Reflection Characteristic of Input Surface of Microchannel Plate[D]. Changchun: Changchun University of Science and Technology, 2018.
|
[11] |
刘术林, 匡蕾, 孙建宁, 等. 降低微通道板输入面电极反射率的技术途径[J]. 应用光学, 2011, 32(2): 296-299. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201102025.htm
LIU Shulin, KUANG Lei, SUN Jianning, et al. Technical solution on reducing reflectance of MCP inputsurface electrode[J]. Journal of Applied Optics, 2011, 32(2): 296-299. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201102025.htm
|
[12] |
Hamamatsu Photonics K. K. MCP assembly[EB/OL]. http://www.hamamatsu.com.cn/UserFiles/upload/file/20212021/MCP.pdf 2022-6-15.
|
[13] |
邱祥彪, 闵信杰, 金戈, 等. 采用干法刻蚀进行微通道板扩口理论模型研究[J]. 红外技术, 2022, 44(8): 818-823. http://hwjs.nvir.cn/article/id/3a4581d2-bc9b-427e-9aaf-ae217c7218c6
QIU Xiangbiao, MIN Xinjie, JIN Ge, et al. Theoretical model of funnel microchannel plate fabricated through dry etching[J]. Infrared Technology, 2022, 44(8): 818-823. http://hwjs.nvir.cn/article/id/3a4581d2-bc9b-427e-9aaf-ae217c7218c6
|
[14] |
程耀进, 石峰, 郭晖, 等. MCP参数对微光像增强器分辨力影响研究[J]. 应用光学, 2010, 31(2): 292-296. DOI: 10.3969/j.issn.1002-2082.2010.02.028
CHENG Yaojin, SHI Feng, GUO Hui, et al. Effect of MCP parameters on resolution of image intensifier[J]. Journal of Applied Optics, 2010, 31(2): 292-296. DOI: 10.3969/j.issn.1002-2082.2010.02.028
|
[15] |
顾燕. 电子散射对微光像增强器分辨力的影响研究[D]. 南京: 南京理工大学, 2009.
GU Yan. Effect of Electron Scattering on Resolution of LLL Image Intensifier[D]. Nanjing: Nanjing University of Technology, 2009.
|
[16] |
Photonis Corp. Technical note: Halo[EB/OL]. https://www.photonis.com/system/files/2019-03/Halo.pdf 2022-6-15.
|
[17] |
Estrera J P, Ostromek T E, Bacarella A V, et al. Advanced image intensifier night vision system technologies: status and summary 2002[C]//SPIE, 2003, 4796: 49-60.
|
[18] |
李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
|
[19] |
曾进能, 李廷涛, 常乐, 等. MCP输入增强膜对像增强器主要性能的影响研究[J]. 红外技术, 2020, 42(8): 735-741. http://hwjs.nvir.cn/article/id/hwjs202008005
ZENG Jinneng, LI Tingtao, CHANG Le, et al. Effect of MCP input enhancement film on image intensifier performance[J]. Infrared Technology, 2020, 42(8): 735-741. http://hwjs.nvir.cn/article/id/hwjs202008005
|
[20] |
Csorba I I P. Modulation transfer function (MTF) of image intensifier tubes[C]//Assessment of Imaging Systems Ⅱ of SPIE, 1981, 274: 42-51.
|
[21] |
Glesener J, Estrera J. Two micron pore size MCP-based image intensifiers[C]//Optical Components and Materials Ⅶ of SPIE, 2010, 7598: 310-315.
|
[22] |
WANG Y, YANG G W, CHANG B K. Effect of changing the MCP's bias angle on resolution of image intensifier[C]//2010 8th International Vacuum Electron Sources Conference and Nanocarbon of IEEE, 2010: 244-246.
|
[23] |
Hoenderken T H, Hagen C W, Barth J E, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(3): 843-850.
|
[24] |
李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
|
[25] |
Koshida N, Kiuchi Y. Influence of output electron energy distribution of microchannel plates on the resolution of image intensifiers[J]. Advances in Electronics and Electron Physics., 1988, 74: 79-85.
|
[26] |
WANG L, BANE K, CHEN C, et al. Suppression of secondary electron emission using triangular grooved surface in the ILC dipole and wiggler magnets[C]//2007 IEEE Particle Accelerator Conference (PAC) of IEEE, 2007: 4234-4236.
|
[27] |
胡天存, 曹猛, 鲍艳, 等. 基于ZnO阵列的银表面二次电子发射抑制技术[J]. 中国空间科学技术, 2017, 37(2): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201702008.htm
HU Tiancun, CAO Meng, BAO Yan, et al. Technique for inhibiting secondary electron emission of silver based on ZnO array[J]. Chinese Space Science and Technology, 2017, 37(2): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201702008.htm
|
[28] |
王丹, 贺永宁, 叶鸣, 等. 金纳米结构表面二次电子发射特性[J]. 物理学报, 2018, 67(8): 087902. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201808023.htm
WANG Dan, HE Yongning, YE Ming, et al. Secondary electron emission characteristics of gold nanostructures[J]. Acta Phys. Sin., 2018, 67(8): 087902. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201808023.htm
|
[29] |
贺永宁, 王丹, 叶鸣, 等. 铝合金镀银表面粗糙化处理方法及其SEY抑制机理[J]. 表面技术, 2018, 47(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201805003.htm
HE Yongning, WANG Dan, YE Ming, et al. Roughening method and SEY inhibition mechanism of aluminium alloy silver plated surface[J]. Surface Technology, 2018, 47(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201805003.htm
|
[30] |
Gert Otto Nützel. Image intensifier for night vision device: US 10, 886, 095 B2 [P]. United States, 2021-1-5.
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379. |
[3] | WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014. |
[4] | LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801. |
[5] | DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764. |
[6] | ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451. |
[7] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[8] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[9] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[10] | WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271. |
1. |
赵洪山,王惠东,刘婧萱,杨伟新,李忠航,林诗雨,余洋,吕廷彦. 考虑局部纹理特征和全局温度分布的电力设备红外图像超分辨率重建方法. 电力系统保护与控制. 2025(02): 89-99 .
![]() | |
2. |
徐浙君. 基于优化深度学习的低照度图像超分辨率重建方法的研究. 科技通报. 2024(04): 39-43+53 .
![]() |