Citation: | HE Feng, XU Bo, LAN Zhengli, SONG Yiji, ZENG Qingping. High-Performance Near-Infrared Photodetector Based on a Graphene/Silicon Microholes Array Heterojunction[J]. Infrared Technology , 2022, 44(11): 1236-1242. |
[1] |
PENG K Q, WANG X, LI L, et al. Silicon nanowires for advanced energy conversion and storage[J]. Nano Today, 2013, 8(1): 75-97. DOI: 10.1016/j.nantod.2012.12.009
|
[2] |
XIE C, ZHANG X, RUAN K, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. Journal of Materials Chemistry A, 2013, 1(48): 15348-15354, . DOI: 10.1039/c3ta13750c
|
[3] |
Garnett E, YANG P. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082-1087. DOI: 10.1021/nl100161z
|
[4] |
Yoon H P, Yuwen Y A, Kendrick C E, et al. Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths[J]. Applied Physics Letters, 2010, 96(21): 213503. DOI: 10.1063/1.3432449
|
[5] |
PENG K Q, WANG X, LI L, et al. High-performance silicon nanohole solar cells[J]. Journal of the American Chemical Society, 2010, 132(20): 6872-6873. DOI: 10.1021/ja910082y
|
[6] |
Jeong S, Garnett E C, WANG S, et al. Hybrid silicon nanocone–polymer solar cells[J]. Nano Letters, 2012, 12(6): 2971-2976. DOI: 10.1021/nl300713x
|
[7] |
Weickert J, Dunbar R, Hesse H, et al. Nanostructured organic and hybrid solar cells[J]. Adv. Mater, 2011, 23: 1810-1828. DOI: 10.1002/adma.201003991
|
[8] |
TIAN B, ZHENG X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889, . DOI: 10.1038/nature06181
|
[9] |
TONG X W, WANG J J, LI J X, et al. Enhancing the device performance of SiNP array/PtTe2 heterojunction photodetector by the light trapping effect[J]. Sensors and Actuators A: Physical, 2021, 322: 112625, DOI: 10.1016/j.sna.2021.112625
|
[10] |
LIANG F X, ZHAO X Y, JIANG J J, et al. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/Pyramid Si heterojunction[J]. Small, 2019, 15(44): 1903831. DOI: 10.1002/smll.201903831
|
[11] |
Willardson R K, Beer A C. Semiconductors and Semimetals[M]. Academic Press, 1977.
|
[12] |
郝秋来, 周立庆. 石墨烯合成及其光电特性[J]. 激光与红外, 2014, 44(12): 1295-1299. DOI: 10.3969/j.issn.1001-5078.2014.12.001
HAO Qiulai, ZHOU Liqing. Synthesis and optical-electrical characteristics of graphene[J]. Laser and Infrared, 2014, 44(12): 1295-1299. DOI: 10.3969/j.issn.1001-5078.2014.12.001
|
[13] |
MIAO X, Tongay S, Petterson M, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750. DOI: 10.1021/nl204414u
|
[14] |
朱淼, 朱宏伟. 石墨烯/硅光电探测器[J]. 自然杂志, 2016, 2(38): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201602005.htm
ZHU Miao, ZHU Hongwei. Graphene charge-injection photodetectors[J]. Nature Electronics, 2016, 2(38): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201602005.htm
|
[15] |
XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83. DOI: 10.1016/j.nantod.2018.02.009
|
[16] |
WANG J J, FU C, CHENG H Y, et al. Leaky mode resonance-induced sensitive ultraviolet photodetector composed of graphene/small diameter silicon nanowire array heterojunctions[J]. ACS Nano, 2021, 15(10): 16729-16737. DOI: 10.1021/acsnano.1c06705
|
[17] |
方昕宇, 陈俊. 石墨烯/硅光电探测器的IV及CV特性[J]. 光子学报, 2019, 48(12): 1248004.
FANG Xinyu, CHEN Jun. I-V and C-V characteristics of graphene/silicon photodetector [J]. Acta Photonica Sinica, 2019, 48(12): 1248004.
|
[1] | ZHANG Yingxu, LI Peiyuan, SI Yang, YAO Liangliang, ZHAO Peng, YUAN Shouzhang, YIN Hui, LI Xiongjun. MTF Testing of Infrared Focal Plane Array Based on Microstructures[J]. Infrared Technology , 2024, 46(7): 821-825. |
[2] | MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375. |
[3] | TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42. |
[4] | CHEN Zhengchao, TANG Libin, HAO Qun, WANG Shanli, ZHUANG Jisheng, KONG Jincheng, ZUO Wenbin, JI Rongbin. Research Progress on Infrared Detection Materials and Devices of HgCdTe Multilayer Heterojunction[J]. Infrared Technology , 2022, 44(9): 889-903. |
[5] | HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157. |
[6] | YANG Liangliang, ZHAO Yongbing, TANG Jian, GUO Renjia. Research on the Influence of Temperature and Microstructure Height Error on Diffraction Efficiency for Diffractive Optical Elements[J]. Infrared Technology , 2020, 42(3): 213-217. |
[7] | LIU Min, LIU Dingquan, ZHOU Sheng, LUO Haihan, ZHANG Qiuyu. Design of a 3.7-4.8 μm Band Infrared Refractive-diffractive Hybrid Objective Lens with Surface Micro Structure[J]. Infrared Technology , 2019, 41(10): 918-923. |
[8] | SHI Yunsheng, LIU Bingqi, YANG Xing. Nanoscale Infrared Spectroscopy Characterization of Graphite Mesa Microstructure[J]. Infrared Technology , 2016, 38(11): 914-919. |
[9] | LI Xiong-jun, KONG Jin-cheng, WANG Guang-hua, YU Lian-jie, KONG Ling-de, YANG Li-li, QIU feng, LI Cong, JI Rong-bin. The Effect of Annealing on the Microstructure and Photosensitivity of Amorphous MCT Films[J]. Infrared Technology , 2010, 32(5): 255-258. DOI: 10.3969/j.issn.1001-8891.2010.05.002 |
[10] | Study on Microstructure of a Fractured PVC Slice[J]. Infrared Technology , 2003, 25(1): 64-67. DOI: 10.3969/j.issn.1001-8891.2003.01.016 |
1. |
冀佳琦,刘洋. 二维大角度快反镜双线性插值拟合标定法. 激光与红外. 2024(11): 1737-1743 .
![]() |