HE Feng, XU Bo, LAN Zhengli, SONG Yiji, ZENG Qingping. High-Performance Near-Infrared Photodetector Based on a Graphene/Silicon Microholes Array Heterojunction[J]. Infrared Technology , 2022, 44(11): 1236-1242.
Citation: HE Feng, XU Bo, LAN Zhengli, SONG Yiji, ZENG Qingping. High-Performance Near-Infrared Photodetector Based on a Graphene/Silicon Microholes Array Heterojunction[J]. Infrared Technology , 2022, 44(11): 1236-1242.

High-Performance Near-Infrared Photodetector Based on a Graphene/Silicon Microholes Array Heterojunction

More Information
  • Received Date: May 24, 2022
  • Revised Date: July 04, 2022
  • This paper reports a heterojunction photodetector constructed from a graphene and silicon microhole array that possesses high-performance near-infrared light detection capabilities. The silicon microhole array constructed by photolithography and reactive ion etching has a smooth surface, which ensures a low surface carrier recombination rate. Meanwhile, the hole-array structure can effectively suppress the reflection of incident light, increase the effective illumination area, and improve the photoabsorption efficiency of the graphene/silicon heterojunction, thereby improving the responsivity of the device. The device exhibits evident current rectification characteristics under a ±3 V bias, with a rectification ratio of 4.30 ×105, and a current on-off ratio of 9.20×105 under irradiation with 810 nm incident light with a power density of 4.25 mW/cm2. Under the illumination of 810 nm with the power intensity of 118 μW/cm2, the current responsivity of the photodetector can reach 679.70 mA/W, and the specific detectivity is 3.40×1012 Jones. The voltage responsivity reaches 1.79×106 V/W at an incident power intensity of 7 μW/cm2. More importantly, the device exhibited a swift response speed with rise/decay times of 20/21.3 μs. Compared with commercial Si-based photodiodes, the graphene/silicon microhole array photodetector has features, including a simple device geometry and simplified fabrication processes, that may significantly reduce the fabrication cost. The results demonstrate the substantial potential of graphene/silicon microhole array heterojunction photodetectors for low-cost, stable, and efficient near-infrared light detection applications in the future.
  • [1]
    PENG K Q, WANG X, LI L, et al. Silicon nanowires for advanced energy conversion and storage[J]. Nano Today, 2013, 8(1): 75-97. DOI: 10.1016/j.nantod.2012.12.009
    [2]
    XIE C, ZHANG X, RUAN K, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. Journal of Materials Chemistry A, 2013, 1(48): 15348-15354, . DOI: 10.1039/c3ta13750c
    [3]
    Garnett E, YANG P. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082-1087. DOI: 10.1021/nl100161z
    [4]
    Yoon H P, Yuwen Y A, Kendrick C E, et al. Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths[J]. Applied Physics Letters, 2010, 96(21): 213503. DOI: 10.1063/1.3432449
    [5]
    PENG K Q, WANG X, LI L, et al. High-performance silicon nanohole solar cells[J]. Journal of the American Chemical Society, 2010, 132(20): 6872-6873. DOI: 10.1021/ja910082y
    [6]
    Jeong S, Garnett E C, WANG S, et al. Hybrid silicon nanocone–polymer solar cells[J]. Nano Letters, 2012, 12(6): 2971-2976. DOI: 10.1021/nl300713x
    [7]
    Weickert J, Dunbar R, Hesse H, et al. Nanostructured organic and hybrid solar cells[J]. Adv. Mater, 2011, 23: 1810-1828. DOI: 10.1002/adma.201003991
    [8]
    TIAN B, ZHENG X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889, . DOI: 10.1038/nature06181
    [9]
    TONG X W, WANG J J, LI J X, et al. Enhancing the device performance of SiNP array/PtTe2 heterojunction photodetector by the light trapping effect[J]. Sensors and Actuators A: Physical, 2021, 322: 112625, DOI: 10.1016/j.sna.2021.112625
    [10]
    LIANG F X, ZHAO X Y, JIANG J J, et al. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/Pyramid Si heterojunction[J]. Small, 2019, 15(44): 1903831. DOI: 10.1002/smll.201903831
    [11]
    Willardson R K, Beer A C. Semiconductors and Semimetals[M]. Academic Press, 1977.
    [12]
    郝秋来, 周立庆. 石墨烯合成及其光电特性[J]. 激光与红外, 2014, 44(12): 1295-1299. DOI: 10.3969/j.issn.1001-5078.2014.12.001

    HAO Qiulai, ZHOU Liqing. Synthesis and optical-electrical characteristics of graphene[J]. Laser and Infrared, 2014, 44(12): 1295-1299. DOI: 10.3969/j.issn.1001-5078.2014.12.001
    [13]
    MIAO X, Tongay S, Petterson M, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750. DOI: 10.1021/nl204414u
    [14]
    朱淼, 朱宏伟. 石墨烯/硅光电探测器[J]. 自然杂志, 2016, 2(38): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201602005.htm

    ZHU Miao, ZHU Hongwei. Graphene charge-injection photodetectors[J]. Nature Electronics, 2016, 2(38): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201602005.htm
    [15]
    XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83. DOI: 10.1016/j.nantod.2018.02.009
    [16]
    WANG J J, FU C, CHENG H Y, et al. Leaky mode resonance-induced sensitive ultraviolet photodetector composed of graphene/small diameter silicon nanowire array heterojunctions[J]. ACS Nano, 2021, 15(10): 16729-16737. DOI: 10.1021/acsnano.1c06705
    [17]
    方昕宇, 陈俊. 石墨烯/硅光电探测器的IV及CV特性[J]. 光子学报, 2019, 48(12): 1248004.

    FANG Xinyu, CHEN Jun. I-V and C-V characteristics of graphene/silicon photodetector [J]. Acta Photonica Sinica, 2019, 48(12): 1248004.
  • Cited by

    Periodical cited type(2)

    1. 潘生生,袁涛,周孝好,王振. 高性能PtS_2/MoTe_2异质结红外光电探测器. 吉林大学学报(信息科学版). 2024(01): 74-80 .
    2. 梁良,杜雨馨,杨子建. 基于近红外光谱技术的气体浓度检测研究. 激光杂志. 2024(03): 253-257 .

    Other cited types(2)

Catalog

    Article views (178) PDF downloads (63) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return