SHEN Lian, LI Ran, WEI Chaoqun, ZHAO Weiyan, ZHU Pengfei, XU Shichun, QI Yanwu. Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger[J]. Infrared Technology , 2024, 46(2): 208-215.
Citation: SHEN Lian, LI Ran, WEI Chaoqun, ZHAO Weiyan, ZHU Pengfei, XU Shichun, QI Yanwu. Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger[J]. Infrared Technology , 2024, 46(2): 208-215.

Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger

More Information
  • Received Date: August 08, 2022
  • Revised Date: September 17, 2022
  • The brazing process of TC4/Ni for a Dewar cold finger with a miniature Joule–Thomson-cooled infrared focal plane detector was selected, and the brazing process of TC4/Ni was investigated based on the microstructure of the brazing method and solder type and the reliability of the joint structure. The results show that research on the brazing process of the TC4 /Ni cold finger end-face structure has practical significance in engineering by combining the simulation results of stress, deformation, and cooling time with the analysis results of rust prevention and corrosion. Through an orthogonal test, an improved process scheme of the high-temperature vacuum brazing + AgCu28 brazing filler metal combination was determined, which could control element segregation and reduce the formation of the welding brittle phase. Based on the penetration rate, stamping, high-voltage holding, and shear strength tests, the conical weld was the best welding structure.
  • [1]
    李家鹏, 曹菁, 陈双涛, 等. 节流制冷器自调机构低温形变特性分析[J]. 低温与超导, 2016(4): 26-30.

    LI J P, CAO J, CHEN S T, et al. Performance analysis of the cryogenic characteristics of self-regulating part of small J-T cryocooler[J]. Cryogenics & Superconductivity, 2016(4): 26-30.
    [2]
    陈芳, 高超, 罗世魁. 大面阵红外焦平面杜瓦冷指支撑结构设计[J]. 红外与激光工程, 2020, 49(8): 190-196.

    CHEN F, GAO C, LUO S K. Cold head supporting structure of dewar used in large infrared focal plane[J]. Infrared and Laser Engineering, 2020, 49(8): 190-196.
    [3]
    孙闻. 制冷型红外探测器组件低温热特性研究[D]. 北京: 中国科学院大学, 2017.

    SUN W. Research on Low Temperature Thermal Characteristics of Cryogenic Infrared Detector Assembly[D]. Beijing: University of Chinese Academy of Sciences, 2017.
    [4]
    方永建. 4J29/4J36铁基合金与TC4钛合金异种金属焊接组织及性能研究[D]. 成都: 西南交通大学, 2020.

    FANG Y J. Research on Microstructures and Properties of Dissimilar Welded Joints between 4J29/4J36 Iron-based Alloy and TC4 Titanium Alloy[D]. Chengdu: Southwest Jiaotong University, 2020.
    [5]
    张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2008.

    ZHANG Q Y, ZHUANG H S. Brazing and Soldering Manual[M]. Beijing: China Machine Press, 2008.
    [6]
    王晓阳, 曹建, 代翔宇, 等. Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金[J]. 焊接学报, 2019, 40(3): 47-51.

    WANG X Y, CAO J, DAI X Y, et al. Ag-Cu brazing of ZTA ceramics and TC4 titanium alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 47-51.
    [7]
    李玉龙, 杨瑾, 禹业晓. 钛及钛合金钎焊特点及现状[J]. 热加工工艺, 2011, 40(9): 130-133.

    LI Y L, YANG J, YU Y X. Characteristic and current status of titanium and its alloys[J]. Hot Working Technology, 2011, 40(9): 130-30.
    [8]
    李芬, 刘泳良, 田宏, 等. 钎焊工艺对AgCu28钎焊焊缝偏析的影响[J]. 真空电子技术, 2018(6): 56-60.

    LI F, LIU Y L, TIAN H, et al. Influence of brazing process on segregation of AgCu28 brazed welding[J]. Vacuum Electronics, 2018(6): 56-60.
    [9]
    张汇文. TC4钛合金与1Cr18Ni9Ti不锈钢钎焊工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    ZHANG H W. Procedure Study on Brazing of TC4 Titanium Alloy to 1Cr18Ni9Ti Stainless Steel[D]. Harbin: Harbin Institute of Technology, 2006.
  • Related Articles

    [1]SUN Junwei, KONG Xiangsheng, HU Hanlin, LIU Jiwei, WANG Xingxiang, LI Songhua. Vacuum Life of Uncooled Infrared Detector[J]. Infrared Technology , 2024, 46(12): 1448-1452.
    [2]SHEN Lian, CHEN Zhengchao, REN Hai, YANG Zhengjiang, YANG Kun, HE Yin, HU Zhonggui. Current Status of Vacuum Brazing Technology for Optical Windows[J]. Infrared Technology , 2023, 45(8): 808-813.
    [3]WANG Shang, ZHANG Xingxiang, ZHU Junqing. Design and Analysis of All Aluminum Alloy Optical Mechanical Structure of Space Cameras[J]. Infrared Technology , 2022, 44(4): 364-370.
    [4]WANG Shang, ZHANG Xingxiang, SHA Wei, ZHU Junqing. Topology Optimization Design and Analysis of an Integrated Aluminum Alloy Mirror[J]. Infrared Technology , 2022, 44(1): 61-65.
    [5]YANG Qiming, GAO Sibo, WANG Can, DUAN Liangfei, QIAN Fuli, DUAN Qian, ZHANG Jie, WANG Guanghua, LU Chaoyu, DUAN Yu. Study on the Effects of Yb: Ag Alloy Cathode on the Photoelectric Performance of the Top Emitting White Organic Light-emitting Devices[J]. Infrared Technology , 2021, 43(12): 1207-1211.
    [6]GUO Xiangxiang, HAN Penglei. Effect of Orifice Size on Flow Stability of Shape Memory Alloy Self-Regulated Cryocoolers[J]. Infrared Technology , 2021, 43(6): 607-613.
    [7]HAN Penglei, NIE Xuelian. Design of Self-Regulating Mechanism for Shape Memory Alloy Joule–ThomsonCooler[J]. Infrared Technology , 2018, 40(7): 679-683.
    [8]YUAN Jun, GONG Yu, FENG Jiangmin, YANG Xuan, TAI Yunjian, HE Wenjin, ZHU Qin, PU Chaoguang, LI Bingzhe. Low Temperature Welding of Uncooled Focal Plane Detector Window Based on InPb Alloy[J]. Infrared Technology , 2017, 39(7): 659-663.
    [9]RONG Bai-lian, TANG Li-bin, YANG Yan, ZHU Ying-feng, LI Quan-bao. Discrimination of Unknown Lithium Element for Analysis Alloy Sample of Silver and Copper by GDMS[J]. Infrared Technology , 2010, 32(3): 169-172. DOI: 10.3969/j.issn.1001-8891.2010.03.012
    [10]LI Hong-tao, LIU Jian-xue. Study on Zirconium and Titanium Far-infrared Grain Drying Compound Material[J]. Infrared Technology , 2006, 28(1): 16-18. DOI: 10.3969/j.issn.1001-8891.2006.01.004

Catalog

    Article views (94) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return