TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42.
Citation: TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42.

Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared

More Information
  • Received Date: April 13, 2022
  • Revised Date: November 29, 2022
  • Germanium is an important infrared optical material. To reduce Fresnel reflection loss on the germanium surface and improve the light utilization rate, the anti-reflection performance of the conical microstructure on a germanium substrate was studied. Based on the finite difference time domain (FDTD) method and the single factor method, the effects of the microstructure parameters, such as duty ratio, period, height, and the angle of incidence on reflectivity are discussed for the 8 μm to 12 μm long-wavelength infrared band. The structural parameters of the microstructure at low reflection was determined. Its average reflectivity over the entire wavelength range is less than 1%, which is much lower than the 35.47% reflectivity of the slab germanium structure, and the reflectivity in the wavelength range of 9 μm to 11 μm is less than 0.5%. The average reflectivity of the conical microstructure remained low when light was incident at 40°. By comparing the optimized conical microstructure with the slab structure, the excellent antireflection performance of the conical microstructure over the entire wavelength range was further confirmed based on the equivalent refractive index, reflected electric field intensity distribution, and absorption per unit volume.
  • [1]
    程海娟, 于晓辉, 彭浪, 等. Ge基底LaF3-ZnS-Ge高耐用中波红外增透膜[J]. 红外与激光工程, 2019, 48(11): 262-268.

    CHENG H J, YU X H, PENG L, et al. LaF3-ZnS-Ge high-durability MWIR antireflective film on Ge substrate[J]. Infrared and Laser Engineering, 2019, 48(11): 262-268.
    [2]
    向华, 武亮亮, 赵登峰, 等. 表面微纳结构对光的透射性能影响分析[J]. 光学技术, 2020, 46(4): 404-409.

    XIANG H, WU L L, ZHAO D F, et al. Analysis of effect of surface micro-nano structure on transmission performance of light[J]. Optical Technique, 2020, 46(4): 404-409.
    [3]
    YE X, HUANG J, GENG F, et al. Broadband antireflection subwavelength structures on fused silica using lower temperatures normal atmosphere thermal dewetted Au nanopatterns[J]. IEEE Photonics Journal, 2015, 8(1): 1-10.
    [4]
    Busse L E, Frantz J A, Shaw L B, et al. Review of antireflective surface structures on laser optics and windows[J]. Applied Optics, 2015, 54(31): F303-F310. DOI: 10.1364/AO.54.00F303
    [5]
    杨亮亮, 夏寅聪, 陆玉灿. 抗反射膜对衍射光学元件衍射效率的影响分析[J]. 红外技术, 2021, 43(10): 930-933. http://hwjs.nvir.cn/article/id/e4d1a527-c579-49df-bf54-1cefff6d9902

    YANG L L, XIA Y C, LU Y C. Effect of antireflection films on diffraction efficiency of diffractive optical element[J]. Infrared Technology, 2021, 43(10): 930-933. http://hwjs.nvir.cn/article/id/e4d1a527-c579-49df-bf54-1cefff6d9902
    [6]
    Clapham P B, Hutley M C. Reduction of lens reflexion by the "Moth Eye" principle[J]. Nature, 1973, 244(5414): 281-282. DOI: 10.1038/244281a0
    [7]
    尚鹏, 熊胜明. ZnSe衬底表面亚波长增透结构的设计及误差分析[J]. 中国激光, 2014, 41(1): 0116004.

    SHANG P, XIONG S M. Design and error analysis of sub-wavelength antireflective micro-structure on surface of ZnSe substrate[J]. Chinese Journal of Lasers, 2014, 41(1): 0116004.
    [8]
    TU C, HU J, Menyuk C R, et al. Optimization of random motheye structures for silica windows with normally incident light[C]//Novel Optical Materials and Applications. Optical Society of America, 2021, DOI: 10.1364/noma.2021.nof2c.6.
    [9]
    董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 522004.

    DONG T T, FU Y G, CHEN C, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5): 522004.
    [10]
    潘峰, 张旺, 张荻. 仿生纳米硅结构减反射及陷光性能模拟研究[J]. 光学学报, 2016, 36(5): 171-176.

    PAN F, ZHANG W, ZHANG D. Simulation of anti-reflection and light-trapping property of bio-inspired silicon structure[J]. Acta Optica Sinica, 2016, 36(5): 171-176.
    [11]
    TING C J, CHEN C F, CHOU C P. Antireflection subwavelength structures analyzed by using the finite difference time domain method[J]. Optik, 2009, 120(16): 814-817. DOI: 10.1016/j.ijleo.2008.03.011
    [12]
    SUN C H, JIANG P, JIANG B. Broadband moth-eye antireflection coatings on silicon[J]. Applied Physics Letters, 2008, 92(6): 061112.
    [13]
    YANG L M, PAN C Y, LU F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics & Laser Technology, 2015, 67: 72-77.
    [14]
    吴启花, 熊敏, 黄勇, 等. 硅基中长波红外减反微结构研究[J]. 红外与激光工程, 2017, 46(4): 76-82.

    WU Q H, XIONG M, HUANG Y, et al. Antireflective silicon based microstructures for the mid- and long-wavelength infrared[J]. Infrared and Laser Engineering, 2017, 46(4): 76-82.
    [15]
    李阳平, 陈海波, 刘正堂, 等. 锗表面二维亚波长结构的反应离子刻蚀制备[J]. 材料科学与工艺, 2012, 20(5): 76-80.

    LI Y P, CHEN H B, LIU Z T, et al. Two dimensional subwavelength structures on Ge surface fabricated with reactive ion etching[J]. Materials Science & Technology, 2012, 20(5): 76-80.
    [16]
    徐启远, 刘正堂, 李阳平, 等. 锗衬底红外抗反射亚波长结构的研究[J]. 光学学报, 2010, 30(6): 1745-1748.

    XU Q Y, LIU Z T, LI Y P, et al. Studies of infrared antireflection subwavelength structure on Ge substrate[J]. Acta Optica Sinica, 2010, 30(6): 1745-1748.
    [17]
    Moharam M G, Grann E B, Pommet D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. JOSA A, 1995, 12(5): 1068-1076.
    [18]
    惠爽谋, 花银群, 李志宝. 均匀与混合蛾眼结构减反射性能的模拟[J]. 光学学报, 2019, 39(4): 0416003.

    HUI S M, HUA Y Q, LI Z B. Simulation of anti-reflection properties of uniform and hybrid moth-eye structures[J]. Acta Optica Sinica, 2019, 39(4): 0416003.
  • Cited by

    Periodical cited type(6)

    1. 刘威剑,黄阳,张生杰,宋俊儒,张超,冀翼,袁群. 基于扩束与辅助测量的大口径红外材料光学均匀性高精度检测. 光子学报. 2025(02): 206-215 .
    2. 缪彦美,子光平,彭明清,应飞飞. 化学气相沉积法制备ZnS中“彩色”来源和可见光散射控制研究. 云南冶金. 2024(05): 108-110+121 .
    3. 黄阳,赵英龙,张生杰,都晓寒,张超. 面向高性能的红外折射式镜头装调技术. 红外与激光工程. 2023(04): 218-226 .
    4. 李树锋,王丽,高东文. 基片温度对脉冲激光沉积ZnS:Co薄膜微结构及光学性质的影响研究. 真空科学与技术学报. 2023(09): 738-744 .
    5. 赵小玻,韦中华,张旭,钱纁,于浩海. 化学气相沉积ZnS、ZnSe研究进展. 人工晶体学报. 2023(12): 2125-2134 .
    6. 汪德文,王俊平,袁厚呈,刘章,周进,邓佳杰,王鑫,吴贲华,章健,王士维. 真空反应烧结制备米级尺寸钇铝石榴石(YAG)透明陶瓷. 无机材料学报. 2023(12): 1483-1484 .

    Other cited types(2)

Catalog

    Article views (105) PDF downloads (26) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return