Citation: | HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157. |
[1] |
LI X, SHEN R, MA S, et al. Graphene-based heterojunction photo-catalysts[J]. Applied Surface Science, 2018, 430: 53-107. DOI: 10.1016/j.apsusc.2017.08.194
|
[2] |
WANG J J, LIU S, WANG J, et al. Valley super current in the Kekulé graphene superlattice heterojunction[J]. Physical Review B, 2020, 101(24): 245428. DOI: 10.1103/PhysRevB.101.245428
|
[3] |
Kecsenovity E, Endrodi B, Toth P S, et al. Enhanced photo-electrochemical performance of cuprous oxide/Graphene nanohybrids[J]. Journal of American Chemistry Society, 2017, 139(19): 6682-6692. DOI: 10.1021/jacs.7b01820
|
[4] |
Tran M H, Park T, Hur J. Solution-processed ZnO: graphene quantum dot/poly-TPD heterojunction for high-performance UV photodetectors[J]. Applied Surface Science, 2021, 539: 148222. DOI: 10.1016/j.apsusc.2020.148222
|
[5] |
ZHENG S, SUN J, HAO J, et al. Engineering SnO2 nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room -temperature NO2 detection[J]. Nanotechnology, 2021, 32(15): 155505. DOI: 10.1088/1361-6528/abd657
|
[6] |
Kirubasankar B, Murugadoss V, LIN J, et al. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors[J]. Nanoscale, 2018, 10(43): 20414-20425. DOI: 10.1039/C8NR06345A
|
[7] |
SONG T, LONG B, YIN S, et al. Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light[J]. Chemical Engineering Journal, 2021, 404: 126455. DOI: 10.1016/j.cej.2020.126455
|
[8] |
LI Q, QIU S, WU C, et al. Computational investigation of MgH2/graphene heterojunctions for hydrogen storage[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2357-2363. DOI: 10.1021/acs.jpcc.0c10714
|
[9] |
Bae S, Kim H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578. DOI: 10.1038/nnano.2010.132
|
[10] |
WU J, Becerril H A, BAO Z, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302. DOI: 10.1063/1.2924771
|
[11] |
XU Y, CHENG C, DU S, et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions[J]. ACS Nano, 2016, 10(5): 4895-919. DOI: 10.1021/acsnano.6b01842
|
[12] |
Paradisanos I, McCreary K M, Adinehloo D, et al. Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition[J]. Applied Physics Letters, 2020, 116: 203104. DOI: 10.1063/5.0004379
|
[13] |
QIAN G, CHEN J, YU T, et al. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Letters, 2021, 13(1): 77. DOI: 10.1007/s40820-021-00607-5
|
[14] |
Massaro A, Pecoraro A, Muñoz-García A B, et al. First-principles study of na intercalation and diffusion mechanisms at 2D MoS2/Graphene interfaces[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2276-2286. DOI: 10.1021/acs.jpcc.0c10107
|
[15] |
Bhaviripudi S, JIA X, Dresselhaus M S, et al. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst[J]. Nano Letters, 2010, 10(10): 4128-4133. DOI: 10.1021/nl102355e
|
[16] |
YI Z Y, XU J Y, XU Z H, et al. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries[J]. Journal of Energy Chemistry, 2021, 60: 241-248. DOI: 10.1016/j.jechem.2021.01.022
|
[17] |
Hasan M T, LEE B H, LIN C W, et al. Near-infrared emitting graphene quantum dots synthesized from reduced graphene oxide for in vitro/in vivo/ex vivo bioimaging applications[J]. 2D Materials, 2021, 8(3): 035013. DOI: 10.1088/2053-1583/abe4e3
|
[18] |
TANG Q, WANG L, MA X, et al. Rodlike SnO2/Graphene nano-composite and its application for lithium-ion batteries[J]. Materials Letters, 2021, 294: 129765. DOI: 10.1016/j.matlet.2021.129765
|
[19] |
YANG W, CHEN G, SHI Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797. DOI: 10.1038/nmat3695
|
[20] |
QIANG M, HUANG X M, LV K, et al. Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite[J]. Separation and Purification Technology, 2021, 259: 118131. DOI: 10.1016/j.seppur.2020.118131
|
[21] |
Ashraf M A, LIU Z L, PENG W X, et al. Combination of sonochemical and freeze-drying methods for synthesis of Graphene/Ag-doped TiO2 nanocomposite: a strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets[J]. Ceramics International, 2020, 46(6): 7446-7452. DOI: 10.1016/j.ceramint.2019.11.241
|
[22] |
LI X S, CAI W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. DOI: 10.1126/science.1171245
|
[23] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896
|
[24] |
Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493. DOI: 10.1126/science.1136836
|
[25] |
Kim K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. DOI: 10.1038/nature07719
|
[26] |
YAN K, WU D, PENG H, et al. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation[J]. Nature Communications, 2012, 3: 1280. DOI: 10.1038/ncomms2286
|
[27] |
LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. DOI: 10.1126/science.aab3798
|
[28] |
LIANG F X, WANG J Z, WANG Y, et al. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection[J]. Applied Surface Science, 2017, 426: 391-398. DOI: 10.1016/j.apsusc.2017.07.051
|
[29] |
ZHANG T, CHANG H, WU Y, et al. Macroscopic and direct light propulsion of bulk graphene material[J]. Nature Photonics, 2015, 9(7): 471-476. DOI: 10.1038/nphoton.2015.105
|
[30] |
Park J M, CAO Y, Watanabe K, et al. Tunable strongly coupled super conductivity in magic-angle twisted trilayer graphene[J]. Nature, 2021, 590(7845): 249-255. DOI: 10.1038/s41586-021-03192-0
|
[31] |
XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83. DOI: 10.1016/j.nantod.2018.02.009
|
[32] |
Novoselov K S, JIANG D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of United Statesof America, 2005, 102(30): 10451-10453. DOI: 10.1073/pnas.0502848102
|
[33] |
KONG W Y, WU G A, WANG K Y, et al. Graphene-beta-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. DOI: 10.1002/adma.201604049
|
[34] |
MA P, Salamin Y, Baeuerle B, et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size[J]. ACS Photonics, 2019, 6: 154-161 DOI: 10.1021/acsphotonics.8b01234
|
[35] |
Flöry N, MA P, Salamin Y, et al. Waveguide-integrated vander Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J]. Nature Nanotechnology, 2020, 15(2): 118-124 DOI: 10.1038/s41565-019-0602-z
|
[36] |
AlAmri A M, Leung S F, Vaseem M, et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene hetero-structure[J]. IEEE Transactions On Electron Devices, 2019, 66(6): 2657-2661. DOI: 10.1109/TED.2019.2911715
|
[37] |
GUO J S, LI J, LIU C Y, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Science & Applications, 2020, 9(29): 1-11 http://doc.paperpass.com/journal/20200049gkxyyy-e.html
|
[38] |
YANG F, YU K, CONG H, et al. Highly enhanced SWIR image sensors based on Ge1–xSnx/Graphene heterostructure photodetector[J]. ACS Photonics, 2019, 6(5): 1199-1206. DOI: 10.1021/acsphotonics.8b01731
|
[39] |
Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. DOI: 10.1038/nature12385
|
[40] |
XU L, QIU C, PENG L M, et al. Transconductance amplification in dirac-source field-effect transistors enabled by Graphene/Nanotube hereojunctions[J]. Advanced Electronic Materials, 2020, 6(5): 1901289. DOI: 10.1002/aelm.201901289
|
[41] |
YUAN L, CHUANG T F, Kuc A, et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene hetero- structures[J]. Science Advances, 2018, 4(2): 9. http://www.researchgate.net/profile/Long_Yuan5/publication/322900841_Photocarrier_generation_from_interlayer_charge-transfer_transitions_in_WS2-graphene_heterostructures/links/5af44c0b4585157136ca1d3d/Photocarrier-generation-from-interlayer-charge-transfer-transitions-in-WS2-graphene-heterostructures.pdf
|
[42] |
LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. DOI: 10.1021/acs.nanolett.5b04538
|
[43] |
LI J T, LIN Y, LU J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance[J]. ACS Nano, 2015, 9: 6794-6800. DOI: 10.1021/acsnano.5b01319
|
[44] |
JIN H, CHEN Y, ZHANG L, et al. Positive and negative photo-conductivity characteristics in CsPbBr3/Graphene hetero-junction[J]. Nanotechnology, 2021, 32(8): 085202. DOI: 10.1088/1361-6528/abc850
|
[45] |
LIU X, GAO J, ZHANG G, et al. Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance[J]. Nanoscale, 2018, 10(42): 19854-19862. DOI: 10.1039/C8NR06110F
|
[46] |
Eshkalak E K, Sadeghzadeh S, Molaei F. Interfacial thermal resistance mechanism for the polyaniline (C3N)-Graphene heterostructure[J]. The Journal of Physical Chemistry C, 2020, 124(26): 14316-14326. DOI: 10.1021/acs.jpcc.0c02051
|
[47] |
GAO Y, LIU Q, XU B. Lattice mismatch dominant yet mechanically tunable thermal conductivity in bilayer heterostructures[J]. ACS Nano, 2016, 10(5): 5431-5439. DOI: 10.1021/acsnano.6b01674
|
[48] |
LIN L, DENG B, SUN J, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Review, 2018, 118(18): 9281-9343. DOI: 10.1021/acs.chemrev.8b00325
|
[49] |
Puneetha P, Mallem S P R, Lee Y W, et al. Strain-controlled flexible Graphene/GaN/PDMS sensors based on the piezotronic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36660-36669. DOI: 10.1021/acsami.0c06534
|
[50] |
WANG X, LONG R. Rapid charge separation boosts solar hydrogen generation at the Graphene-MoS2 junction: time-domain ab initio analysis[J]. The Journal of Physical Chemistry Letters, 2021, 12(11): 2763-2769. DOI: 10.1021/acs.jpclett.1c00322
|
[51] |
HE J, HE D, WANG Y, et al. Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals hetero-structures[J]. Optical Express, 2017, 25(3): 1949-1957. DOI: 10.1364/OE.25.001949
|
[52] |
YIN J, LIU L, ZANG Y, et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors[J]. Light: Science and Applications, 2021, 10(1): 113. DOI: 10.1038/s41377-021-00553-2
|
[53] |
TAN W C, SHI W H, CHEN Y F. A highly sensitive Graphene-organic hybrid photodetector with a piezoelectric substrate[J]. Advanced Functional Materials, 2014, 24(43): 6818-6825. DOI: 10.1002/adfm.201401421
|
[54] |
LIN R, ZHENG W, ZHANG D, et al. High-performance Graphene/β- Ga2O3 heterojunctiondeep-ultraviolet photodetector with hot-electron excited carrier multiplication[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22419-22426. http://www.onacademic.com/detail/journal_1000040438416110_937f.html
|
[55] |
Riazimehr S, Kataria S, Gonzalez-Medina J M, et al. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by inter digitating Schottky and gated regions[J]. ACS Photonics, 2018, 6(1): 107-115. DOI: 10.1021/acsphotonics.8b00951
|
[56] |
ZHANG X, YAN C, HU X, et al. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction[J]. Materials Research Express, 2021, 8(3): 035602. DOI: 10.1088/2053-1591/abed14
|
[57] |
WANG H, GAO S, ZHANG F, et al. Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector[J]. Advanced Science, 2021, 8(15): 2100503. DOI: 10.1002/advs.202100503
|
[58] |
DANG W, PENG H, LI H, et al. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene[J]. Nano Letters, 2010, 10(8): 2870-2876. DOI: 10.1021/nl100938e
|
[59] |
LIN Y C, LU N, Perea-Lopez N, et al. Direct synthesis of van der Waals solids[J]. ACS Nano, 2014, 8(4): 3715-3723. DOI: 10.1021/nn5003858
|
[60] |
LIU Y, Weinert M, LI L. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001)[J]. Physical Review Letters, 2012, 108(11): 115501. DOI: 10.1103/PhysRevLett.108.115501
|
[61] |
Aeschlimann S, Rossi A, Chávez-Cervantes M, et al. Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures[J]. Science Advances, 2020, 6: eaay0761. DOI: 10.1126/sciadv.aay0761
|
[62] |
HAN T, LIU H, WANG S, et al. Research on the preparation and spectral characteristics of Graphene/TMDs hetero-structures[J]. Nanoscale Research Letters, 2020, 15(1): 219. DOI: 10.1186/s11671-020-03439-1
|
[63] |
REN X, WANG B, HUANG Z, et al. Flexible self-powered photo- electrochemical-type photodetector based on 2D WS2-graphene heterojunction[J]. Flat Chem, 2021, 25: 100215. http://www.sciencedirect.com/science/article/pii/S2452262720300647
|
[64] |
GAO S, WANG Z, WANG H, et al. Graphene/MoS2/Graphene vertical heterostructure-based broadband photodetector with high performance[J]. Advanced Materials Interfaces, 2020, 8(3): 2001730. DOI: 10.1002/admi.202001730
|
[65] |
ZHANG X, TIAN L, DIAOD, et al. High-response heterojunction phototransistor based on vertically grown graphene nanosheets film[J]. Carbon, 2021, 172: 720-728. DOI: 10.1016/j.carbon.2020.10.054
|
[66] |
LAN J C, QIAO J, SUNG W H, et al. Role of carrier-transfer in the optical nonlinearity of graphene/Bi2Te3 heterojunctions[J]. Nanoscale, 2020, 12(32): 16956-16966. DOI: 10.1039/D0NR02085K
|
[67] |
LI L, ZANG Y, LIN S, et al. Fabrication and characterization of SiC/Ge/ graphene heterojunction with Ge micro-nano structures[J]. Nanotechnology, 2020, 31(14): 145202. DOI: 10.1088/1361-6528/ab6676
|
[68] |
XU A, YANG S, LIU Z, et al. Near-infrared photodetector based on Schottky junctions of monolayer graphene/GeOI[J]. Materials Letters, 2018, 227: 17-20. DOI: 10.1016/j.matlet.2018.04.107
|
[69] |
TAO Z, ZHOU D, YIN H, et al. Graphene/GaAs heterojunction for highly sensitive, self-powered visible/NIR photodetectors[J]. Materials Science in Semiconductor Processing, 2020, 111: 104989. DOI: 10.1016/j.mssp.2020.104989
|
[70] |
HU J, LI L, WANG R, et al. Fabrication and photoelectric properties of a grapheme-silicon nanowire heterojunction on a flexible polytetra fluoroethylene substrate[J]. Materials Letters, 2020, 281: 128599. DOI: 10.1016/j.matlet.2020.128599
|
[71] |
Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics[J]. Nature Nanotechnology, 2013, 8(2): 100-103. DOI: 10.1038/nnano.2012.224
|
[72] |
YOU C, DENG W, CHEN X, et al. Enhanced photodetection performance in graphene-assisted tunneling photodetector[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1702-1709. DOI: 10.1109/TED.2021.3058087
|
[73] |
DU W Y, YAO Z H, ZHU L P, et al. Photodoping of graphene/silicon van der Waals heterostructure observed by terahertz emission spectroscopy[J]. Applied Physics Letters, 2020, 117: 081106. DOI: 10.1063/5.0020068
|
[74] |
PAN R, HAN J, ZHANG X, et al. Excellent performance in vertical graphene -C60-graphene heterojunction phototransistors with a tunable bi -directionality[J]. Carbon, 2020, 162: 375-381. DOI: 10.1016/j.carbon.2020.02.030
|
[75] |
LIU X, GAO P, HU W, et al. Photogenerated-carrier separation and transfer in two-dimensional Janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells[J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 4070-4079. DOI: 10.1021/acs.jpclett.0c00706
|
[76] |
FENG X, LI J, MA Y, et al. Construction of interlayer-expanded MoSe2/Nitrogen-doped graphene heterojunctions for ultra-long-cycling rechargeable aluminum storage[J]. ACS Applied Energy Materials, 2021, 4(2): 1575-1582. DOI: 10.1021/acsaem.0c02797
|
[77] |
SUN X, LI X, ZENG Y, et al. Improving the stability of perovskite by covering graphene on FAPbI3 surface[J]. International Journal of Energy Research, 2021, 45(7): 10808-10820. DOI: 10.1002/er.6564
|
[78] |
Subramanyam B V R S, Alam I, Subudhi S, et al. Enhanced stability of bulk heterojunction organic solar cells by application of few layers of electrochemically exfoliated graphene[J]. Journal of Renewable and Sustainable Energy, 2020, 12: 054101. DOI: 10.1063/5.0007960
|
[79] |
Borah C K, Tyagi P K, Kumar S. The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency[J]. Nanoscale Advances, 2020, 2(8): 3231-3243. DOI: 10.1039/D0NA00309C
|
[80] |
Lancellotti L, Bobeico E, Noce M D, et al. Graphene as non conventional transparent conductive electrode in silicon heterojunction solar cells[J]. Applied Surface Science, 2020, 525(146443): 1-8. http://www.sciencedirect.com/science/article/pii/S0169433220312009
|
[81] |
WU D, GUO J, DU J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on Graphene/PdSe2/Germanium heterojunction[J]. ACS Nano, 2019, 13(9): 9907-9917. DOI: 10.1021/acsnano.9b03994
|
[82] |
Scagliotti M, Salvato M, De Crescenzi M, et al. Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector[J]. Nanotechnology, 2021, 32(15): 155504. DOI: 10.1088/1361-6528/abd789
|
[83] |
XU C, DU Z, HUANG Y, et al. Amorphous-MgGaO film combined with graphene for vacuum-ultraviolet photovoltaic detector[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42681-42687.
|
[84] |
Amarnath M, Gurunathan K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature[J]. Journal of Alloys and Compounds, 2021, 857: 157584. DOI: 10.1016/j.jallcom.2020.157584
|
[85] |
WANG H, FU Y. Graphene-nanowalls/silicon hybrid heterojunction photodetectors[J]. Carbon, 2020, 162: 181-186. DOI: 10.1016/j.carbon.2020.02.023
|
[86] |
YANG J, TANG L, LUO W, et al. Interface engineering of a silicon/graphene heterojunction photodetector via a diamond-like carbon interlayer[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4692-4702. DOI: 10.1021/acsami.0c18850
|