Citation: | ZHANG Yingxu, LI Peiyuan, SI Yang, YAO Liangliang, ZHAO Peng, YUAN Shouzhang, YIN Hui, LI Xiongjun. MTF Testing of Infrared Focal Plane Array Based on Microstructures[J]. Infrared Technology , 2024, 46(7): 821-825. |
The modulation transfer function (MTF) is an important parameter for evaluating the imaging ability of an infrared focal plane (FPA) for targets with different spatial frequencies. The MTF of the focal plane is affected by the size of the photosensitive area of the pixel, center distance of the pixel, and carrier diffusion length. As the number of pixels decreases, the influence of the carrier diffusion length on the MTF becomes more evident. In this study, a convenient and accurate MTF testing method was designed to meet the requirements of MTF testing for hybrid FPA. A special microstructure was fabricated on the focal plane through metal deposition, photolithography, and other processes to replace the inclined knife edge. The MTF of the FPA was obtained by the proposed infrared focal-plane test method. The results demonstrate that the MTF of the FPA can be measured accurately and conveniently using this method, which is convenient for FPA production and development companies to evaluate the FPA performance and verify device fabrication quickly.
[1] |
Gravrand O, Destefanis G, Bisotto S, et al. Issues in HgCdTe research and expected progress in infrared detector fabrication[J]. Journal of Electronic Materials, 2013, 42(11): 3349-3358. DOI: 10.1007/s11664-013-2803-9
|
[2] |
Driggers R G, Vollmerhausen R, Reynolds J P, et al. Infrared detector size: how low should you go[J]. Optical Engineering, 2012, 51(6): 1-7. DOI: 10.1117/1.OE.51.6.061304
|
[3] |
Huard E, Derelle S, Jaeck J, et al. Development of a cryogenic test bench for spectral mtf measurement on midwave infrared focal plane arrays[J]. J. Electron. Mater. , 2020, 49: 6957-6962. https://doi.org/10.1007/s11664-020-08388-0.
|
[4] |
Vasco S B, Baier N, Lobre C, et al. Modulation transfer function measurements by electron-beam-induced current of HgCdTe planar diode with small pitch and high operating temperature[J]. Journal of Electronic Materials, 2023, 52(11): 7081-7088. DOI: 10.1007/s11664-023-10655-9.
|
[5] |
陈伯良, 李向阳. 航天红外成像探测器[M]. 北京: 科学出版社, 2016.
CHEN Boliang, LI Xiangyang. Infrared Imaging Detectors for Space Application[M]. Beijing: Science Press, 2016.
|
[6] |
Schuster J. Numerical simulation of the modulation transfer function (MTF) in infrared focal plane arrays: simulation methodology and MTF optimization[C]// Physics & Simulation of Optoelectronic Devices XXVI. 2018: 105261I.
|
[7] |
Martineau L, Rubaldo L, Chabuel F, et al. MTF optimization of MCT detectors[C]//Sensors, Systems, and Next-Generation Satellites XVI, 2013: 88891B.
|
[8] |
Gravrand O, Baier N, Ferron A, et al. MTf issues in small-pixel-pitch planar quantum IR detectors[J]. Journal of Electronic Materials, 2014, 43: 3025-3032. DOI: 10.1007/s11664-014-3185-3
|
[9] |
王敬辉. 红外焦平面探测器MTF, 串音测试技术研究[D]. 成都: 电子科技大学, 2021.
WANG Jinghui. Research on Infrared Focal Plane Detector's MTF, Crosstalk Testing Technology[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
[10] |
张春仙, 李忠升, 张昦润. 红外热成像系统传递函数的测试研究[J]. 激光与红外, 2019, 49(4): 442-446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201904010.htm
ZHANG Chunxian, LI Zhongsheng, ZHANG Haorun. Study on measurement of MTF in IR systems[J]. Laser & Infrared, 2019, 49(4): 442-446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201904010.htm
|
[11] |
Gunapala S D, Ting D Z, Soibel A, et al. Modulation transfer function of infrared focal plane arrays[C]//Photonics Conference. IEEE, 2015: 600-601.
|
[12] |
中国科学院上海技术物理研究所. 红外焦平面阵列参数测试方法: GB/T 17444-2013[S]. [2023-03-29], 2013.
Shanghai Institute of Technical Physics Chinese Academy of Sciences. Measuring Methods for Parameters of Infrared Focal Plane Arrays: GB/T 17444-2013[S]. [2023-03-29], 2013.
|
[1] | SHEN Lian, LI Ran, WEI Chaoqun, ZHAO Weiyan, ZHU Pengfei, XU Shichun, QI Yanwu. Welding Microstructure and Joint Structure Design of the TC4/Ni Dewar Cold Finger[J]. Infrared Technology , 2024, 46(2): 208-215. |
[2] | TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42. |
[3] | HE Feng, XU Bo, LAN Zhengli, SONG Yiji, ZENG Qingping. High-Performance Near-Infrared Photodetector Based on a Graphene/Silicon Microholes Array Heterojunction[J]. Infrared Technology , 2022, 44(11): 1236-1242. |
[4] | YANG Liangliang, ZHAO Yongbing, TANG Jian, GUO Renjia. Research on the Influence of Temperature and Microstructure Height Error on Diffraction Efficiency for Diffractive Optical Elements[J]. Infrared Technology , 2020, 42(3): 213-217. |
[5] | SHI Yunsheng, LIU Bingqi, YANG Xing. Nanoscale Infrared Spectroscopy Characterization of Graphite Mesa Microstructure[J]. Infrared Technology , 2016, 38(11): 914-919. |
[6] | LI Xiong-jun, KONG Jin-cheng, WANG Guang-hua, YU Lian-jie, KONG Ling-de, YANG Li-li, QIU feng, LI Cong, JI Rong-bin. The Effect of Annealing on the Microstructure and Photosensitivity of Amorphous MCT Films[J]. Infrared Technology , 2010, 32(5): 255-258. DOI: 10.3969/j.issn.1001-8891.2010.05.002 |
[7] | LIU Xiao-dong, ZHANG Xin, WANG Ling-jie, ZHANG Jian-ping, WU Yan-xiong. The Improvement of Slit Method in MTF Testing of Optical Systems[J]. Infrared Technology , 2009, 31(9): 521-524. DOI: 10.3969/j.issn.1001-8891.2009.09.006 |
[8] | CHEN Bo-yang, CHEN Fan-sheng, GUO Qiang. Factors Analyse Based on MTF About Effecting Super Resolution Reconstructed Image[J]. Infrared Technology , 2009, 31(4): 215-219,223. DOI: 10.3969/j.issn.1001-8891.2009.04.008 |
[9] | FAN Hong-bo, TANG Lin, PAN Shun-chen. Research on Developing Virtual IR Imager by MTF of Real System[J]. Infrared Technology , 2007, 29(2): 99-101. DOI: 10.3969/j.issn.1001-8891.2007.02.010 |
[10] | Study on Microstructure of a Fractured PVC Slice[J]. Infrared Technology , 2003, 25(1): 64-67. DOI: 10.3969/j.issn.1001-8891.2003.01.016 |
1. |
张永华. 基于深度学习算法的数模混合芯片测试方法研究. 电子设计工程. 2025(04): 77-81 .
![]() |