XIA Aiming, WU Xuedong. Real-time Object Tracking Based on Context Awareness and Scale Adaptation[J]. Infrared Technology , 2021, 43(5): 429-436.
Citation: XIA Aiming, WU Xuedong. Real-time Object Tracking Based on Context Awareness and Scale Adaptation[J]. Infrared Technology , 2021, 43(5): 429-436.

Real-time Object Tracking Based on Context Awareness and Scale Adaptation

More Information
  • Received Date: June 07, 2019
  • Revised Date: March 18, 2021
  • Because the traditional kernel correlation filter algorithm for visual object tracking has low tracking accuracy under fast motion, background clutter, and motion blurring conditions and cannot deal with scale changes, a real-time object tracking algorithm based on context awareness and scale adaptation is proposed. Based on the kernel correlation filter algorithm framework, context-aware and scale-adaptive methods are introduced to add background information and handle changes in the scale of the target. First, the target region is sampled using the features of the fusion histogram of oriented gradient (fHOG), color names (CN), and gray, and a two-dimensional translation filter is trained. Then, a scale pyramid is established in the target area and multi-scale sampling is performed using fHOG on the target area. Following this, a one-dimensional scale filter is trained. Finally, the update strategy is improved in the model updating stage. The experimental results of 100 sets of video sequences in the standard OTB-2015 dataset show that the proposed algorithm showed an improvement in the accuracy by 13.9% as compared with the benchmark algorithm (kernel correlation filter, KCF), and the success rate improved by 14.2%, which is superior to that of other comparison-tracking algorithms considered in the experiment. Under the conditions of scale change, motion blur, and fast motion, the proposed algorithm can maintain a high speed with accurate tracking.
  • [1]
    Yilmaz A. Object tracking: a survey[J]. Acm Computing Surveys, 2006, 38(4): 1-45. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/1177352.1177355&rfr_id=trans/tp/2009/07/ttp2009071195.htm
    [2]
    Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468. DOI: 10.1109/TPAMI.2013.230
    [3]
    魏全禄, 老松杨, 白亮. 基于相关滤波器的视觉目标跟踪综述[J]. 计算机科学, 2016, 43(11): 1-5, 18. DOI: 10.11896/j.issn.1002-137X.2016.11.001

    WEI Quanlu, LAO Songyang, BAI Liang. Visual Object Tracking Based on Correlation Filters: A Survey[J]. Computer Science, 2016, 43(11): 1-5, 18. DOI: 10.11896/j.issn.1002-137X.2016.11.001
    [4]
    孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907003.htm

    MENG Lu, YANG Xu. A Survey of Object Tracking Algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907003.htm
    [5]
    徐康, 龙敏. 增强尺度估计的特征压缩跟踪算法[J]. 红外技术, 2018, 40(12): 1176-1181. http://hwjs.nvir.cn/article/id/hwjs201812010

    XU Kang, LONG Min. Feature Compression Tracking Algorithm with Enhanced Scale Estimation[J]. Infrared Technology, 2018, 40(12): 1176-1181. http://hwjs.nvir.cn/article/id/hwjs201812010
    [6]
    刘教民, 郭剑威, 师硕. 自适应模板更新和目标重定位的相关滤波器跟踪[J]. 光学精密工程, 2018, 26(8): 2100-2111. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201808032.htm

    LIU Jiaomin, GUO Jianwei, SHI Shuo. Correlation filter tracking based on adaptive learning rate and location refiner[J]. Optics and Precision Engineering, 2018, 26(8): 2100-2111. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201808032.htm
    [7]
    叶瑞哲, 许卓斌. 基于自适应搜索的空时上下文目标跟踪算法[J]. 微电子学与计算机, 2018, 35(6): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201806019.htm

    YE Ruizhe, XU Zhuobin. Spatio-Temporal Context-based Object Tracking Algorithm in Video Surveillance[J]. Microelectronics & Computer, 2018, 35(6): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201806019.htm
    [8]
    胡昭华, 钮梦宇, 邵晓雯, 等. 多层深度特征的目标跟踪算法研究[J]. 现代电子技术, 2019, 42(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201901013.htm

    HU Zhaohua, NIU Mengyu, SHAO Xiaowen, et al. Research on object tracking method based on multi-level deep feature[J]. Modern Electronics Technique, 2019, 42(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201901013.htm
    [9]
    Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition IEEE, 2010: 2544-2550.
    [10]
    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. DOI: 10.1109/TPAMI.2014.2345390
    [11]
    Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167
    [12]
    Danelljan M, Shahbaz Khan F, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1090-1097.
    [13]
    Van De Weijer J, Schmid C, Verbeek J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523. DOI: 10.1109/TIP.2009.2019809
    [14]
    Danelljan M, Häger G, Khan F, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference, 2014: 1-11.
    [15]
    Mueller M, Smith N, Ghanem B. Context-aware correlation filter tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1396-1404.
    [16]
    Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision, 2012: 702-715.
    [17]
    LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration[C]//European Conference on Computer Vision, 2014: 254-265.
    [18]
    WU Y, LIM J, YANG M H. Object Tracking Benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. DOI: 10.1109/TPAMI.2014.2388226
    [19]
    YUN S, CHOI J, YOO Y, et al. Action-decision networks for visual tracking with deep reinforcement learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2711-2720.
    [20]
    LI Y, FU C, HUANG Z, et al. Keyfilter-aware real-time uav object tracking[C]//2020 IEEE International Conference on Robotics and Automation (ICRA), 2020: 193-199.
  • Related Articles

    [1]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [2]DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764.
    [3]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [4]HE Le, LI Zhongwei, LUO Cai, REN Peng, SUI Hao. Infrared and Visible Image Fusion Based on Dilated Convolution and Dual Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 732-738.
    [5]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [6]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [7]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [8]HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology , 2023, 45(2): 143-149.
    [9]CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.
    [10]WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
  • Cited by

    Periodical cited type(1)

    1. 杨晓超,郝慧良. 矿用电缆放电监测系统研究设计. 中国煤炭. 2024(S1): 406-410 .

    Other cited types(0)

Catalog

    Article views (338) PDF downloads (55) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return