CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.
Citation: CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.

Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment

More Information
  • Received Date: October 14, 2020
  • Revised Date: December 28, 2020
  • To address the problem whereby the equipment area cannot be accurately segmented in the infrared image while maintaining substation equipment, this study applied an improved adaptive weight partial differential image segmentation method to segment the equipment area. By analyzing problems such as low signal-to-noise ratio, blurred edges, low contrast, and uneven grayscale of images, we investigated the disadvantages of traditional image segmentation methods, and the segmentation model based on partial differential equations was improved. The proposed adaptive weight LGIF model utilizes the different gray scale inhomogeneity of the target equipment and the background, associated it with the respective average gray scale, and adjusted the weights of the model's global and local energy items. Experiments in a variety of scenarios have verified that the model in this study is more effective and accurate than the OTSU method, CV model, and fixed-weight LGIF model, which is convenient for follow-up feature extraction and recognition.
  • [1]
    罗军川. 电气设备红外诊断技术及在四川电网的应用研究[D]. 重庆: 重庆大学, 2003.

    LUO Junchuan. Researches on Infrared Diagnostic Technology of Electric Equipments and Application in Electric Power Grid of Sichuan[D]. Chongqing: Chongqing University, 2003.
    [2]
    李德刚. 红外诊断技术在电气设备状态检测中的研究与应用[D]. 济南: 山东大学, 2010.

    LI Degang. Research and Application on the Infrared Diagnostics of Electrical Equipment Testing[D]. Jinan: Shandong University, 2010.
    [3]
    周立辉, 张永生, 孙勇, 等. 智能变电站巡检机器人研制及应用[J]. 电力系统自动化, 2011, 35(19): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201119018.htm

    ZHOU Lihui, ZHANG Yongsheng, SUN Yong, et al. Development and application of equipment inspection robot for smart substations[J]. Automation of Electric Power Systems, 2011, 35(10): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201119018.htm
    [4]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. DOI: 10.1109/TSMC.1979.4310076
    [5]
    陈跃伟, 彭道刚, 夏飞, 等. 基于区域生长法和BP神经网络的红外图像识别[J]. 激光与红外, 2018, 48(3): 401-408. DOI: 10.3969/j.issn.1001-5078.2018.03.024

    CHEN Yuewei, PENG Daogang, XIA Fei, et al. Infrared image recognition based on region growing method and BP neural network[J]. Laser & Infrared, 2018, 48(3): 401-408. DOI: 10.3969/j.issn.1001-5078.2018.03.024
    [6]
    施兢业. 基于红外图像处理的变电设备识别与热故障诊断[D]. 上海: 上海电机学院, 2017.

    SHI Jingye. Substation Equipment Recognition and Thermal Fault Diagnosis Based on Infrared Image Processing[D]. Shanghai: Shanghai Dianji University, 2017.
    [7]
    袁建军. 基于偏微分方程图像分割技术的研究[D]. 重庆: 重庆大学, 2012.

    YUAN Jianjun. Image Segmentation Technology Based on Partical Differential Equation[D]. Chongqing: Chongqing University, 2012.
    [8]
    汤茂飞. 基于主动轮廓模型的红外图像分割方法研究[D]. 南京: 南京理工大学, 2015.

    TANG Maofei. Research on Infrared Image Segmentation Method Based on Active Contour Model[D]. Nanjing: Nanjing University of Science & Technology, 2015.
    [9]
    CHAN T, VESE L. Active contours without edges[J]. IEEE Transcactions on Image Processing, 2001, 2(10): 266-277.
    [10]
    LI C, KAO C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition., 2007: (DOI: 10.1109/CVPR.2007.383014).
    [11]
    WANG Li, LI Chunming, SUN Quansen, et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 520-531. DOI: 10.1016/j.compmedimag.2009.04.010
  • Cited by

    Periodical cited type(4)

    1. 王振,刘磊. 基于改进分水岭算法的电力设备红外图像分割. 红外技术. 2025(04): 484-492 . 本站查看
    2. 刘沛津,张香瑞,魏平. 基于融合重构的电气设备红外图像EnFCM聚类分割方法. 红外技术. 2024(03): 295-304 . 本站查看
    3. 张利军. 基于红外热成像技术的变电站巡检机器人的应用. 山东煤炭科技. 2024(12): 168-172 .
    4. 冯杰,张莹,叶影,贺润平,王哲斐. NSST域电气设备红外图像增强处理算法设计. 电子设计工程. 2023(21): 176-179+185 .

    Other cited types(3)

Catalog

    Article views (183) PDF downloads (37) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return