MA Lu. Low-light Image Enhancement Based on Multi-scale Wavelet U-Net[J]. Infrared Technology , 2022, 44(4): 410-420.
Citation: MA Lu. Low-light Image Enhancement Based on Multi-scale Wavelet U-Net[J]. Infrared Technology , 2022, 44(4): 410-420.

Low-light Image Enhancement Based on Multi-scale Wavelet U-Net

More Information
  • Received Date: May 18, 2021
  • Revised Date: June 13, 2021
  • The real-time images collected by imaging systems in low illumination environments suffer from low illumination, severe noise and poor visual effects. To improve the image quality in low light environments, this study proposes a low-light image enhancement method based on a multi-scale wavelet U-Net. This method uses multi-level encoders and decoders to construct a U-Net and introduces the wavelet transform to develop a unit for frequency decomposition of features. This improves the perception of illumination and texture by separating high-frequency and low-frequency information. Multi-scale perceived loss is designed to guide the learned mapping of step-by-step reconstruction from low-frequency information to high-frequency information, thereby optimizing the convergence and performance of the network. Finally, the proposed method and comparison methods are tested on the LOL, LIME, NPE, MEF, DICM and VV datasets. The experimental results demonstrate that the proposed method can effectively brighten images, suppress image noise and texture loss, and improve the PSNR, SSIM, LOE and NIQE metrics. The proposed method exhibits better performance than other comparison algorithms in subjective and objective evaluation.
  • [1]
    王萌萌, 彭敦陆. Retinex-ADNet: 一个低光照图像增强系统[J]. 小型微型计算机系统, 2022, 43(2): 367-371 https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202202021.htm

    WANG M M, PENG D L. Retinex-ADNet: a low-light image enhancement system[J]. Journal of Chinese Computer Systems, 2022, 43(2): 367-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202202021.htm
    [2]
    蒋一纯, 詹伟达, 朱德鹏. 基于亮度通道细节增强的低照度图像处理[J]. 激光与光电子学进展, 2021, 58(4): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202104011.htm

    JIANG Y C, ZHAN W D, ZHU D P. Low-illuminance image processing based on brightness channel detail enhancement[J]. Laser & Optoelectronics Progress, 2021, 58(4): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202104011.htm
    [3]
    黄慧, 董林鹭, 刘小芳, 等. 改进Retinex的低光照图像增强[J]. 光学精密工程, 2020, 28(8): 1835-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008022.htm

    HUANG H, DONG L L, LIU X F, et al. Improved Retinex low light image enhancement method[J]. Optics and Precision Engineering, 2020, 28(8): 1835-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008022.htm
    [4]
    Ibrahim H, Pik Kong N S. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(4): 1752-1758. DOI: 10.1109/TCE.2007.4429280
    [5]
    Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing , 1997, 6(3): 451-62. DOI: 10.1109/83.557356
    [6]
    Jobson D J, Rahman Z, Woodell G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. DOI: 10.1109/83.597272
    [7]
    GAO Y, HU H M, LI B, et al. Naturalness preserved nonuniform illumination estimation for image enhancement based on Retinex[J]. IEEE Transactions on Multimedia, 2018, 20(2): 335-344. DOI: 10.1109/TMM.2017.2740025
    [8]
    FU X Y, ZENG D L, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96. DOI: 10.1016/j.sigpro.2016.05.031
    [9]
    GUO X J, LI Y, LING H B. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. DOI: 10.1109/TIP.2016.2639450
    [10]
    Kin G L, Adedotun A, Soumik S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. DOI: 10.1016/j.patcog.2016.06.008
    [11]
    SHEN L, YUE Z, FENG F, et al. MSR-net: low-light image enhancement using deep convolutional network[EB/OL]. [2017-11-07]. https://arxiv.org/abs/1711.02488.
    [12]
    WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[C]//Proceedings of 2018 British Machine Vision Conference on Machine Vision, Image Processing, and Pattern Recognition, 2018: 1-12(DOI: 10.48550/ARXIV.1808.04560).
    [13]
    HU J, SHEN L, Albanie S, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372
    [14]
    SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1874-1883.
    [15]
    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2017: 1132-1140.
    [16]
    Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 105-114.
    [17]
    MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356. DOI: 10.1109/TIP.2015.2442920
    [18]
    LEE C W, LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372-5384. DOI: 10.1109/TIP.2013.2284059
    [19]
    WANG S, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. DOI: 10.1109/TIP.2013.2261309
    [20]
    Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. DOI: 10.1109/LSP.2012.2227726
    [21]
    FU X, ZENG D, HUANG Y, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82-96.
    [22]
    YING Z, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[EB/OL]. [2017-11-02]. https://arxiv.org/abs/1711.00591.
    [23]
    ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of The 27th ACM International Conference on Multimedia, 2019: 1632-1640.
  • Related Articles

    [1]WU Xiaojun, YU Xianzhe, WANG Peng, ZHAO He, LI Tiancheng. Superpixel-Based Improved Fuzzy C-Means Clustering for Electrical Equipment Infrared Image Segmentation[J]. Infrared Technology , 2025, 47(2): 235-242.
    [2]MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.
    [3]WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology , 2021, 43(8): 757-765.
    [4]LIN Li, LIU Xin, ZHU Junzhen, FENG Fuzhou. Classification of Ultrasonic Infrared Thermal Images Using a Convolutional Neural Network[J]. Infrared Technology , 2021, 43(5): 496-501.
    [5]QI Yongfeng, CHEN Jing, HUO Yuanlian, LI Fayong. Hyperspectral Image Classification Algorithm Based on Multiscale Convolutional Neural Network[J]. Infrared Technology , 2020, 42(9): 855-862.
    [6]DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, YU Wen. Infrared and Visible Image Fusion Based on Convolutional Neural Network[J]. Infrared Technology , 2020, 42(7): 660-669.
    [7]LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80.
    [8]LI Hanchao, CAI Yi, WANG Lingxue. Image Semantic Segmentation Based on Fully Convoluted Network with Global Feature Extraction[J]. Infrared Technology , 2019, 41(7): 595-599,615.
    [9]ZHAN Wei, MA Xinxing, XU Zijian. IR Blind Pixels Detection and Correction Based on Superpixel Segmentation[J]. Infrared Technology , 2018, 40(11): 1085-1090.
    [10]YUN Hong-quan, XU Li, SUN Xiao, MING De-lie, JU Wen. Moving Target Detection Algorithm Based on Superpixel Spatiotemporal Saliency[J]. Infrared Technology , 2015, (5): 404-410.

Catalog

    Article views (219) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return