LIU Feng, LI Jiajun, LI Yuhai, GAO Peipei. A Method of Image Classification for Objects with Camouflaged Color Features[J]. Infrared Technology , 2021, 43(4): 334-341.
Citation: LIU Feng, LI Jiajun, LI Yuhai, GAO Peipei. A Method of Image Classification for Objects with Camouflaged Color Features[J]. Infrared Technology , 2021, 43(4): 334-341.

A Method of Image Classification for Objects with Camouflaged Color Features

More Information
  • Received Date: July 16, 2020
  • Revised Date: August 20, 2020
  • To solve the classification difficulty caused by different objects with similar color features in an image, this paper proposes an image classification method for objects with camouflaged color features. To alleviate the difficulty of distinguishing color-camouflaged objects in RGB images, this method not only combines the spatial domain features of the neighborhood pixels and the spectral domain features of the hyperspectral data, which realizes the spatial-spectrum joint feature construction, but also uses the improved LLE(local linear embedding) algorithm to accomplish spectral dimensional reduction. The proposed method uses an active learning capsule network to train a hyperspectral data classifier and classifies objects in the scene. Active learning can label more representative samples through the improved active learning function and realized capsule network training based on a minor sample dataset, which reduces the cost of sample labeling and model training significantly, thereby improving the classification performance of the model. Experiments show that the algorithm proposed in this paper can effectively classify camouflaged targets and other natural targets based on our self-made hyperspectral dataset. The average accuracy of camouflaged targets was 91%, and the average accuracy of all target types was 89.9%.
  • [1]
    SONG W, LI S, FANG L, et al. Hyperspectral image classification with deep feature fusion network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 99: 1-12. http://ieeexplore.ieee.org/document/8283837/citations
    [2]
    罗建华, 李明奇, 郑泽忠, 等. 基于深度卷积神经网络的高光谱遥感图像分类[J]. 西华大学学报: 自然科学版, 2017, 36(4): 13. https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX201704003.htm

    LUO Jianhua, LI Mingqi, ZHENG Zezhong, et al. Hyperspectral remote sensing images classification using a deep convolutional neural network model[J]. Journal of Xihua University: Natural Science Edition, 2017, 36(4): 13. https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX201704003.htm
    [3]
    CHEN Y, ZHAO X, JIA X. Spectral–spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(6): 2381-2392. http://ieeexplore.ieee.org/document/7018910/
    [4]
    ZHAO W, DU S. Learning multiscale and deep representations for classifying remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113: 155-165. DOI: 10.1016/j.isprsjprs.2016.01.004
    [5]
    张倩, 董安国, 宋睿. 基于多特征和改进自编码的高光谱图像分类[J]. 激光与光电子学进展, 2020, 57(8): 081010. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008012.htm

    ZHANG Qian, DONG Anguo, SONG Rui. Hyperspectral image classification based on multiple features and an improved autoencoder[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081010. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008012.htm
    [6]
    陶志勇, 李杰, 唐晓亮. 融合小波变换与胶囊网络的纹理图像分类算法[J]. 激光与光电子学进展, 2020, 57(24): 241002. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202024006.htm

    TAO Zhiyong, LI Jie, TANG Xiaoliang. Texture image classification algorithm combining wavelet transform and capsule network[J]. Laser & Optoelectronics Progress, 2020, 57(24): 241002. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202024006.htm
    [7]
    Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems, 2017: 3856-3866.
    [8]
    Cohn D A, Ghahramani Z, Jordan M I. Active learning with statistical models[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 705-712. http://arxiv.org/abs/cs/9603104v1
    [9]
    Tuia D. Unbiased query-by-bagging active learning for VHR image classification[C]//Proceedings of SPIE, 2010, 7830: 78300K.
    [10]
    Quadrianto N, Petterson J, Smola A J. Distribution matching for transduction[C]//Advances in Neural Information Processing Systems, 2009: 1500-1508.
    [11]
    纪磊, 张欣, 张丽梅, 等. 基于空谱加权近邻的高光谱图像分类算法[J]. 激光与光电子学进展, 2020, 57(6): 061013. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202006017.htm

    JI Lei, ZHANG Xin, ZHANG Limei, et al. Hyperspectral image classification algorithm based on space-spectral weighted nearest neighbor[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061013. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202006017.htm
    [12]
    WANG J. Locally Linear Embedding[M]// Geometric Structure of High -Dimensional Data and Dimensionality Reduction, Springer Berlin Heidelberg, 2012: 203-220.
  • Related Articles

    [1]SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology , 2024, 46(2): 162-167.
    [2]WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.
    [3]CHU Hongjia, CHEN Guanghua, WANG Kaixuan. Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine[J]. Infrared Technology , 2022, 44(3): 262-267.
    [4]ZHANG Yinguo, TAO Yuxiang, LUO Xiaobo, LIU Minghao. Hyperspectral Image Classification Based on Feature Importance[J]. Infrared Technology , 2020, 42(12): 1185-1191.
    [5]ZHANG Yaling, JI Linna, YANG Fengbao, MU Xiaohui. Bimodal Infrared Images of Frequency Distribution of Difference Features Based on Nonparametric Estimation[J]. Infrared Technology , 2020, 42(4): 361-369.
    [6]LI Hanchao, CAI Yi, WANG Lingxue. Image Semantic Segmentation Based on Fully Convoluted Network with Global Feature Extraction[J]. Infrared Technology , 2019, 41(7): 595-599,615.
    [7]XIANG Yingjie, YANG Guang, ZHANG Jianfeng, WANG Qi. Dimensionality Reduction for Hyperspectral Image Using a Segmented Row-column Kernel Two-dimensional Principal Component Analysis Method[J]. Infrared Technology , 2017, 39(12): 1107-1113.
    [8]CHENG Zhi-duo, REN Deng-feng, HAN Yu-ge. Research on Fast Algorithm for Infrared Radiation Characteristics Based on Dimension Reduction Method[J]. Infrared Technology , 2011, 33(11): 666-669. DOI: 10.3969/j.issn.1001-8891.2011.11.011
    [9]AN Bo-wen, HUI Lin-ru. A Method of Adaptive Noise Reduction Based on Edge Detection[J]. Infrared Technology , 2010, 32(3): 142-144. DOI: 10.3969/j.issn.1001-8891.2010.03.005
    [10]XUAN Yi-min, HONG Yu-ping, HAN Yu-ge. An Analysis on the Infrared Thermal Features of Bridges[J]. Infrared Technology , 2000, 22(4): 10-14. DOI: 10.3969/j.issn.1001-8891.2000.04.003
  • Cited by

    Periodical cited type(12)

    1. 许霄霄,张昕,姚强,朱佳祥,王昕. 基于灰狼自适应阈值分割和改进模糊增强的红外图像NSCT增强算法. 电测与仪表. 2024(01): 46-51 .
    2. 王振,刘磊. 融合彩色模型空间的电力设备红外图像增强. 红外技术. 2024(02): 225-232 . 本站查看
    3. 刘志坚,陶韵旭,刘航,罗灵琳,张德春,何蔚. 融合残差密集与生成对抗网络的红外巡检图像超分辨率重建. 昆明理工大学学报(自然科学版). 2023(05): 120-129 .
    4. 杨小龙,马超,姚陶,李静,栾士江. 基于可见光图像的变压器缺陷识别技术研究. 变压器. 2022(02): 13-18 .
    5. 康辉,杨庆江,冯新宇,李亚妮,刘晓磊. 基于融合算法的电力设备红外图像增强. 黑龙江科技大学学报. 2022(04): 545-549+562 .
    6. 隋宇,宁平凡,牛萍娟,王辰羽,赵地,张伟龙,韩抒真,梁立君,薛高建,崔颜军. 面向架空输电线路的挂载无人机电力巡检技术研究综述. 电网技术. 2021(09): 3636-3648 .
    7. 吴雪琼,孙保华,马洲俊. 配电网设备感知热像的自适应多阈值分割研究. 电力信息与通信技术. 2021(09): 70-76 .
    8. 裴璐,杜浩,黄照贺,黄焕强,吴钊铭. 基于红外检测的电力设备运行风险智能诊断. 电力设备管理. 2020(09): 121-122+132 .
    9. 陈静. 可见光图像检测方法在牵引变电设备故障诊断中的应用. 电气化铁道. 2020(S2): 87-89+94 .
    10. 缪希仁,刘志颖,鄢齐晨. 无人机输电线路智能巡检技术综述. 福州大学学报(自然科学版). 2020(02): 198-209 .
    11. 王小芳,康琛,程宏波,曾晗,辛建波,纪清照. 基于红外图像处理的变电设备热故障自动诊断方法. 华东交通大学学报. 2019(03): 111-118 .
    12. 王小芳,毛华敏. 一种复杂背景下的电力设备红外图像分割方法. 红外技术. 2019(12): 1111-1116 . 本站查看

    Other cited types(7)

Catalog

    Article views (313) PDF downloads (38) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return