CHU Hongjia, CHEN Guanghua, WANG Kaixuan. Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine[J]. Infrared Technology , 2022, 44(3): 262-267.
Citation: CHU Hongjia, CHEN Guanghua, WANG Kaixuan. Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine[J]. Infrared Technology , 2022, 44(3): 262-267.

Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine

More Information
  • Received Date: January 22, 2021
  • Revised Date: April 07, 2021
  • An identification model using a dual-dimension reduction histogram of oriented gradients (HOG) combined with a support vector machine (SVM) is proposed to reduce the time required for finger vein recognition. To solve the problem of high feature dimensionality in the traditional HOG algorithm, the classification ability of the gradient direction interval is first measured using the Fisher criterion. Next, the sequence forward selection method is used to select the gradient direction interval with optimal classification ability to construct a partial direction interval HOG feature. Finally, principal component analysis (PCA) is used to reduce the number of dimensions. An SVM multi-classifier was used for the classification of the FV-USM and THU-FV datasets. The experimental results demonstrate that compared to the HOG+PCA method, the feature dimensions extracted by the dual-dimensional reduction HOG method are reduced by 40%, the recognition time is reduced by 29.85%, the recognition accuracy is 99.17% and 100%, respectively, and the equal error rate is 1.07% and 0.01%, respectively.
  • [1]
    YANG L, YANG G P, YIN Y L, et al. Finger vein recognition with anatomy structure analysis[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 28(8): 1892-1905. https://ieeexplore.ieee.org/document/7882665
    [2]
    CHEN G H, DAI QH, TANG X, et al. An improved least trimmed square hausdorff distance finger vein recognition[C]//International Conference on Systems and Informatics (ICSAI), 2018: 939-943.
    [3]
    LI S Y, ZHANG H G, YANG JF. Finger vein recognition based on local graph structural coding and CNN[C]//Proc of SPIE, 2019, 11069: 110693I-110693I-8.
    [4]
    ZHANG Y K, LI W J, ZHANG L P, et al. Adaptive Gabor convolutional neural networks for finger-vein recognition[C]//International Conference on High Performance Big Data and Intelligent Systems (Hpbd & Is), 2019: 219-222.
    [5]
    LIU H Y, YANG L, YANG G P, et al. Discriminative binary descriptor for finger vein recognition[J]. IEEE Access, 2018, 6: 5795-5804. DOI: 10.1109/ACCESS.2017.2787543
    [6]
    WANG X, WANG H B, HE Y, et al. Novel Algorithm for finger vein recognition based on inception-Resnet module[J]. Proc of SPIE, 2019, 11179: 111791D-111791D-9.
    [7]
    陶志勇, 胡亚磊, 林森. 基于改进AlexNet的手指静脉识别[J]. 激光与光电子学进展, 2020, 57(8): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008007.htm

    TAO Zhiyong, HU Yalei, LIN Sen. Finger vein recognition based on improved AlexNet[J]. Laser & Optoelectronics Progress, 2020, 57(8): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008007.htm
    [8]
    刘超, 王容川, 许晓伟, 等. 基于改进LBP的手指静脉识别算法[J]. 计算机仿真, 2019, 36(1): 381-386. DOI: 10.3969/j.issn.1006-9348.2019.01.079

    LIU Chao, WANG Rongchuan, XU Xiaowei, et al. Finger vein recognition algorithm based on improved LBP[J]. Computer Simulation, 2019, 36(1): 381-386. DOI: 10.3969/j.issn.1006-9348.2019.01.079
    [9]
    李菲, 李小霞, 周颖玥. 基于改进HOG特征和稀疏表示的手指静脉识别[J]. 传感器与微系统, 2018, 37(11): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201811011.htm

    LI Fei, LI Xiaoxia, ZHOU Yingyue. Finger vein recognition based on improved HOG features and sparse representation[J]. Transducer and Microsystem Technologies, 2018, 37(11): 38-41, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201811011.htm
    [10]
    Veluchamy S, Karlmarx L R. System for multimodal biometric recognition based on finger knuckle and finger vein using feature-level fusion and k-support vector machine classifier[J]. IET Biometrics, 2017, 6(3): 232-242. DOI: 10.1049/iet-bmt.2016.0112
    [11]
    徐子豪, 陈光化, 傅志威. 改进型LDA结合LBP的手指静脉识别[J]. 现代电子技术, 2020, 43(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202012002.htm

    XU Zihao, CHEN Guanghua, FU Zhiwei. Finger vein recognition of improved LDA combined with LBP[J]. Modern Electronics Technique, 2020, 43(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202012002.htm
    [12]
    徐铸业, 赵小强. 基于Agast-Adaboost的图像匹配算法[J]. 兰州理工大学学报, 2020, 46(4): 110-115. DOI: 10.3969/j.issn.1673-5196.2020.06.001

    XU Zhuye, ZHAO Xiaoqiang. Image matching algorithm based on Agast-Adaboost[J]. Journal of Lanzhou University of Technology, 2020, 46(6): 1-4. DOI: 10.3969/j.issn.1673-5196.2020.06.001
    [13]
    贾楚. 基于改进HOG特征的行人检测算法研究[D]. 秦皇岛: 燕山大学, 2016.

    JIA Chu. Research of Pedestrian Detection Based on Improved HOG Features[D]. Qinhuangdao: Yanshan University, 2016.
    [14]
    蒋政, 程春玲. 基于Haar特性的改进HOG的人脸特征提取算法[J]. 计算机科学, 2017, 44(1): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201701057.htm

    JIANG Zheng, CHENG Chunling. Improved HOG face feature extraction algorithm based on Haar characteristics[J]. Computer Science, 2017, 44(1): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201701057.htm
  • Related Articles

    [1]ZHANG Meijin, QU Qiubo. Infrared Thermography Low-zero Insulator Identification Based on GWO-SVM[J]. Infrared Technology , 2021, 43(4): 397-402.
    [2]WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161.
    [3]ZHANG Yinguo, TAO Yuxiang, LUO Xiaobo, LIU Minghao. Hyperspectral Image Classification Based on Feature Importance[J]. Infrared Technology , 2020, 42(12): 1185-1191.
    [4]YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208.
    [5]SUN Zhong-hua, YANG Xiao-di, GuLimila?kezierbieke. A Multi-scale Wavelet Image Retrieval Simulation of Kernel Extreme Learning Machine[J]. Infrared Technology , 2015, (6): 484-487.
    [6]JING Yuan-yuan, TIAN Yuan. Image Segmentation Research Based on Kernel Function of Support Vector Machine Algorithm[J]. Infrared Technology , 2015, (3): 234-239.
    [7]LI Jun-xiu, JIANG San-ping. Adaptive Threshold Image Denoising Algorithm Based on Principal Component Analysis[J]. Infrared Technology , 2014, (4): 311-314,319.
    [8]ZHAO Hai-dong, SHEN Jin-yuan, LIU Run-jie, LIU Jian-jun. Tobacco Leaf Selection Method of the Near-infrared Spectroscopy Effective Feature Based on the Cluster[J]. Infrared Technology , 2013, (10): 659-664.
    [9]WANG You-jun, LV Xu-liang, HU Jiang-hua, SHA Jian-jun, HE Chao. Metal Emissivity Forecasting Model Based on SVM[J]. Infrared Technology , 2008, 30(11): 674-676. DOI: 10.3969/j.issn.1001-8891.2008.11.014
    [10]FAN Bin, FENG Yun-Song. The Application of the Support Vector Machine in Infared Imaging Automatic Target Recognition[J]. Infrared Technology , 2007, 29(1): 38-41. DOI: 10.3969/j.issn.1001-8891.2007.01.010
  • Cited by

    Periodical cited type(3)

    1. 冯杰,冯扬,刘翔,邓陈进,喻忠军. 远距离监视激光雷达动目标快速检测. 红外与激光工程. 2023(04): 300-308 .
    2. 刘电,张秀杰. 基于级联模型的高速公路抛洒物检测算法. 数字技术与应用. 2023(12): 70-72 .
    3. 曾宏志,史洪松. 面向光通信网络系统的异常入侵在线检测研究. 激光杂志. 2022(12): 139-143 .

    Other cited types(4)

Catalog

    Article views (139) PDF downloads (22) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return