Citation: | CHU Hongjia, CHEN Guanghua, WANG Kaixuan. Fast Finger Vein Recognition Based on a Dual Dimension Reduction Histogram of Oriented Gradient and Support Vector Machine[J]. Infrared Technology , 2022, 44(3): 262-267. |
[1] |
YANG L, YANG G P, YIN Y L, et al. Finger vein recognition with anatomy structure analysis[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 28(8): 1892-1905. https://ieeexplore.ieee.org/document/7882665
|
[2] |
CHEN G H, DAI QH, TANG X, et al. An improved least trimmed square hausdorff distance finger vein recognition[C]//International Conference on Systems and Informatics (ICSAI), 2018: 939-943.
|
[3] |
LI S Y, ZHANG H G, YANG JF. Finger vein recognition based on local graph structural coding and CNN[C]//Proc of SPIE, 2019, 11069: 110693I-110693I-8.
|
[4] |
ZHANG Y K, LI W J, ZHANG L P, et al. Adaptive Gabor convolutional neural networks for finger-vein recognition[C]//International Conference on High Performance Big Data and Intelligent Systems (Hpbd & Is), 2019: 219-222.
|
[5] |
LIU H Y, YANG L, YANG G P, et al. Discriminative binary descriptor for finger vein recognition[J]. IEEE Access, 2018, 6: 5795-5804. DOI: 10.1109/ACCESS.2017.2787543
|
[6] |
WANG X, WANG H B, HE Y, et al. Novel Algorithm for finger vein recognition based on inception-Resnet module[J]. Proc of SPIE, 2019, 11179: 111791D-111791D-9.
|
[7] |
陶志勇, 胡亚磊, 林森. 基于改进AlexNet的手指静脉识别[J]. 激光与光电子学进展, 2020, 57(8): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008007.htm
TAO Zhiyong, HU Yalei, LIN Sen. Finger vein recognition based on improved AlexNet[J]. Laser & Optoelectronics Progress, 2020, 57(8): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202008007.htm
|
[8] |
刘超, 王容川, 许晓伟, 等. 基于改进LBP的手指静脉识别算法[J]. 计算机仿真, 2019, 36(1): 381-386. DOI: 10.3969/j.issn.1006-9348.2019.01.079
LIU Chao, WANG Rongchuan, XU Xiaowei, et al. Finger vein recognition algorithm based on improved LBP[J]. Computer Simulation, 2019, 36(1): 381-386. DOI: 10.3969/j.issn.1006-9348.2019.01.079
|
[9] |
李菲, 李小霞, 周颖玥. 基于改进HOG特征和稀疏表示的手指静脉识别[J]. 传感器与微系统, 2018, 37(11): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201811011.htm
LI Fei, LI Xiaoxia, ZHOU Yingyue. Finger vein recognition based on improved HOG features and sparse representation[J]. Transducer and Microsystem Technologies, 2018, 37(11): 38-41, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201811011.htm
|
[10] |
Veluchamy S, Karlmarx L R. System for multimodal biometric recognition based on finger knuckle and finger vein using feature-level fusion and k-support vector machine classifier[J]. IET Biometrics, 2017, 6(3): 232-242. DOI: 10.1049/iet-bmt.2016.0112
|
[11] |
徐子豪, 陈光化, 傅志威. 改进型LDA结合LBP的手指静脉识别[J]. 现代电子技术, 2020, 43(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202012002.htm
XU Zihao, CHEN Guanghua, FU Zhiwei. Finger vein recognition of improved LDA combined with LBP[J]. Modern Electronics Technique, 2020, 43(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ202012002.htm
|
[12] |
徐铸业, 赵小强. 基于Agast-Adaboost的图像匹配算法[J]. 兰州理工大学学报, 2020, 46(4): 110-115. DOI: 10.3969/j.issn.1673-5196.2020.06.001
XU Zhuye, ZHAO Xiaoqiang. Image matching algorithm based on Agast-Adaboost[J]. Journal of Lanzhou University of Technology, 2020, 46(6): 1-4. DOI: 10.3969/j.issn.1673-5196.2020.06.001
|
[13] |
贾楚. 基于改进HOG特征的行人检测算法研究[D]. 秦皇岛: 燕山大学, 2016.
JIA Chu. Research of Pedestrian Detection Based on Improved HOG Features[D]. Qinhuangdao: Yanshan University, 2016.
|
[14] |
蒋政, 程春玲. 基于Haar特性的改进HOG的人脸特征提取算法[J]. 计算机科学, 2017, 44(1): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201701057.htm
JIANG Zheng, CHENG Chunling. Improved HOG face feature extraction algorithm based on Haar characteristics[J]. Computer Science, 2017, 44(1): 303-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201701057.htm
|
[1] | ZHANG Meijin, QU Qiubo. Infrared Thermography Low-zero Insulator Identification Based on GWO-SVM[J]. Infrared Technology , 2021, 43(4): 397-402. |
[2] | WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161. |
[3] | ZHANG Yinguo, TAO Yuxiang, LUO Xiaobo, LIU Minghao. Hyperspectral Image Classification Based on Feature Importance[J]. Infrared Technology , 2020, 42(12): 1185-1191. |
[4] | YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208. |
[5] | SUN Zhong-hua, YANG Xiao-di, GuLimila?kezierbieke. A Multi-scale Wavelet Image Retrieval Simulation of Kernel Extreme Learning Machine[J]. Infrared Technology , 2015, (6): 484-487. |
[6] | JING Yuan-yuan, TIAN Yuan. Image Segmentation Research Based on Kernel Function of Support Vector Machine Algorithm[J]. Infrared Technology , 2015, (3): 234-239. |
[7] | LI Jun-xiu, JIANG San-ping. Adaptive Threshold Image Denoising Algorithm Based on Principal Component Analysis[J]. Infrared Technology , 2014, (4): 311-314,319. |
[8] | ZHAO Hai-dong, SHEN Jin-yuan, LIU Run-jie, LIU Jian-jun. Tobacco Leaf Selection Method of the Near-infrared Spectroscopy Effective Feature Based on the Cluster[J]. Infrared Technology , 2013, (10): 659-664. |
[9] | WANG You-jun, LV Xu-liang, HU Jiang-hua, SHA Jian-jun, HE Chao. Metal Emissivity Forecasting Model Based on SVM[J]. Infrared Technology , 2008, 30(11): 674-676. DOI: 10.3969/j.issn.1001-8891.2008.11.014 |
[10] | FAN Bin, FENG Yun-Song. The Application of the Support Vector Machine in Infared Imaging Automatic Target Recognition[J]. Infrared Technology , 2007, 29(1): 38-41. DOI: 10.3969/j.issn.1001-8891.2007.01.010 |
1. |
冯杰,冯扬,刘翔,邓陈进,喻忠军. 远距离监视激光雷达动目标快速检测. 红外与激光工程. 2023(04): 300-308 .
![]() | |
2. |
刘电,张秀杰. 基于级联模型的高速公路抛洒物检测算法. 数字技术与应用. 2023(12): 70-72 .
![]() | |
3. |
曾宏志,史洪松. 面向光通信网络系统的异常入侵在线检测研究. 激光杂志. 2022(12): 139-143 .
![]() |