ZHANG Yinguo, TAO Yuxiang, LUO Xiaobo, LIU Minghao. Hyperspectral Image Classification Based on Feature Importance[J]. Infrared Technology , 2020, 42(12): 1185-1191.
Citation: ZHANG Yinguo, TAO Yuxiang, LUO Xiaobo, LIU Minghao. Hyperspectral Image Classification Based on Feature Importance[J]. Infrared Technology , 2020, 42(12): 1185-1191.

Hyperspectral Image Classification Based on Feature Importance

More Information
  • Received Date: July 20, 2020
  • Revised Date: September 14, 2020
  • To reduce the redundancy in hyperspectral images and further explore their potential classification information, a convolutional neural network(CNN) classification model based on feature importance is proposed. First, the random forest(RF) model obtained by Bayesian optimization training is used to evaluate the importance of hyperspectral images. Second, an appropriate number of hyperspectral image bands are selected as new training samples according to the evaluation results. Finally, the 3D-CNN is used to extract and classify the obtained samples. Based on two sets of measured hyperspectral remote sensing image data, the experimental results demonstrate the following: compared with the original spectral information obtained directly using a support vector machine(SVM) and the CNN classification effect, the proposed hyperspectral classification model based on feature importance can effectively improve the classification accuracy of hyperspectral images while reducing dimensionality.
  • [1]
    YE M C, JI C X, CHEN H, et al. Residual deep PCA-based feature extraction for hyperspectral image[J/OL]. Neural Computing & Applications, 2020, 32(7): doi: 10.1007/s00521-019-04503-3.
    [2]
    Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality[J]. AMS Math Challenges Lecture, 2000, 1: 32. http://www.researchgate.net/publication/220049061_High-Di
    [3]
    Marpu G, Chanussot P R J, Benediktsson J A. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J]. IEEE Geosci. Remote Sens. Lett., 2012, 9(3): 447-451. DOI: 10.1109/LGRS.2011.2172185
    [4]
    Villa A, Benediktsson J A, Chanussot J, et al. Hyperspectral image classification with independent component discriminant analysis[J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(12): 4865-4876. DOI: 10.1109/TGRS.2011.2153861
    [5]
    Zabalza J, REN J, WANG Z, et al. Singular spectrum analysis for effective feature extraction in hyperspectral imaging[J]. IEEE Geosci. Remote Sens. Lett., 2014, 11(11): 1886-1890. DOI: 10.1109/LGRS.2014.2312754
    [6]
    Chacvez P S, Berlin G L, Sowers L B. Statistical method for selecting landsat MSS retio[J]. Jourmal of Applied Photographic Engineering, 1982, 1(8): 23-30. http://ci.nii.ac.jp/naid/80001173869
    [7]
    Charles S. Selecting band combination from multispectral data[J]. Photogrammetric Engineering and Remote Sensing, 1985, 51(6): 681-687. http://ci.nii.ac.jp/naid/80002491091
    [8]
    张爱武, 杜楠, 康孝岩, 等.非线性变换和信息相邻相关的高光谱自适应波段选择[J]. 红外与激光工程, 2017, 46(5): 05308001. http://www.cqvip.com/QK/91846A/20175/672269415.html

    ZHANG Aiwu, DU Nan, KANG Xiaoyan, et al. Adaptive band selection for nonlinear transform and information adjacent correlation[J]. Infrared and Laser Engineering, 2017, 46(5): 05308001. http://www.cqvip.com/QK/91846A/20175/672269415.html
    [9]
    HU W, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: e258619. http://www.tandfonline.com/servlet/linkout?suffix=CIT0026&dbid=16&doi=10.1080%2F15481603.2018.1426091&key=10.1155%2F2015%2F258619
    [10]
    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680.
    [11]
    Haut J, Paoletti M, Plaza J, et al. Cloud implementation of the K-means algorithm for hyperspectral image analysis[J]. J. Supercomput., 2017, 73(1): 514-529. DOI: 10.1007/s11227-016-1896-3
    [12]
    Melgani F, Lorenzo B. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans. Geosci. Remote Sens., 2004, 42(8): 1778-1790. DOI: 10.1109/TGRS.2004.831865
    [13]
    Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification[J]. IEEE Trans. Geosci. Remote Sens., 2004, 43(6): 1351-1362. http://ieeexplore.ieee.org/document/1433032/
    [14]
    Haut J, Paoletti M, Paz-Gallardo A, et al. Cloud implementation of logistic regression for hyperspectral image classification[C]//Comput. Math. Methods Sci. Eng. (CMMSE), 2017, 3: 1063-2321.
    [15]
    Bazi Y, Melgani F. Gaussian process approach to remote sensing image classification[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(1): 186-197. DOI: 10.1109/TGRS.2009.2023983
    [16]
    Breiman L. Bagging predictors[J]. Mach Learn, 1996, 24(2): 123-140. DOI: 10.1007/BF00058655
    [17]
    Cutler A, Cutler D R, Stevens J R. Random Forests[M]//Ensemble Machine Learning, Boston: Springer, 2012: 157-175.
    [18]
    李贞贵.随机森林改进的若干研究[D].厦门: 厦门大学, 2013.

    LI Z G. Several Research on Random Forest Improvement[D]. Xiamen: Xiamen University, 2013.
    [19]
    LI Y, ZHANG H, SHEN Q. Spectral-spatial classification of hyper- spectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67. DOI: 10.3390/rs9010067
    [20]
    CHEN Y, JIANG H, LI C X, et al. Deep features extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. DOI: 10.1109/TGRS.2016.2584107
  • Related Articles

    [1]MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509.
    [2]MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.
    [3]HUANG Yu, ZHANG Baohui, WU Jie, CHEN Yingyan, JI Li, WU Xudong, YU Shikong. Adaptive Multipoint Calibration Non-uniformity Correction Algorithm[J]. Infrared Technology , 2020, 42(7): 637-643.
    [4]ZHANG Fuwang, YUAN Huijuan. Image Mixed Noise Removal Based on Deep Residual Network[J]. Infrared Technology , 2019, 41(7): 628-633.
    [5]ZHANG Long, DONG Feng, FU Yutian. Non-uniformity Correction for Infrared Image Using Neural Networks[J]. Infrared Technology , 2018, 40(2): 164-169.
    [6]TAN Dong-jie, ZHANG An. Non-uniformity Correction Based on Local Histogram Specification[J]. Infrared Technology , 2013, (6): 325-328.
    [7]Improved Algorithm of Neural Network Used in IR Image Non-uniformity Correction[J]. Infrared Technology , 2013, (4): 232-237.
    [8]HAN Kai-Liang, HE Chun-Fang. A Nonuniformity Correction Algorithm for IRFPAs Based on Two Points and It's Realization by DSP[J]. Infrared Technology , 2007, 29(9): 541-544. DOI: 10.3969/j.issn.1001-8891.2007.09.012
    [9]LIU Chan-lao, TAN Li-xun, LIU Wei-guo, LI Chun-yan. An Improve High Pass Filtering Algorithm for Nonuniformity Correction of Infrared Image[J]. Infrared Technology , 2006, 28(8): 439-442. DOI: 10.3969/j.issn.1001-8891.2006.08.002
    [10]Study on Non-uniformity Correction of Infrared Image[J]. Infrared Technology , 2002, 24(1): 1-3. DOI: 10.3969/j.issn.1001-8891.2002.01.001
  • Cited by

    Periodical cited type(5)

    1. 毕淳锴,张远辉,付铎. 基于多视角热像图序列的物体表面温度场重建. 计量学报. 2024(07): 997-1006 .
    2. 郑叶龙,李长勇,夏宁宁,李玲一,张国民,赵美蓉. 基于“十字”标志物的红外图像与三维点云融合方法. 天津大学学报(自然科学与工程技术版). 2024(10): 1090-1099 .
    3. 倪成玉,张远辉,朱俊江,付铎. 热像仪下基于几何约束的空间温度场重建. 光电工程. 2024(11): 60-73 .
    4. 齐恩铁,姜春雨,赵立英,孙海峰. 基于红外边界约束的点云目标识别系统. 激光与红外. 2024(12): 1894-1899 .
    5. 王洁,伍弘,詹仲强,李金良,金铭,陈文涛. 基于Lazy Snapping混合模拟退火算法的高压开关柜温度场红外三维图像重建仿真. 红外技术. 2023(03): 276-281 . 本站查看

    Other cited types(2)

Catalog

    Article views (399) PDF downloads (69) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return