MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509.
Citation: MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509.

Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network

More Information
  • Received Date: February 20, 2023
  • Revised Date: March 30, 2023
  • Available Online: May 23, 2024
  • Infrared imaging systems often produce fringe noise in imaging results owing to the non-uniformity of the detection unit. To obtain better correction results, most deep learning-based infrared image non-uniformity correction algorithms adopt complex network structures, which increase the computational cost. This study proposes a lightweight network-based infrared image non-uniformity correction algorithm and designs a lightweight multi-scale downsampling module (LMDM) for the encoding process of the Unet network. The LMDM uses pixel splitting and channel reconstruction to realize feature map downsampling and realizes multi-scale feature extraction using multiple cascaded depth-wise separable convolutions (DSC). In addition, the algorithm introduces a lightweight channel attention mechanism for adjusting feature weights to achieve better contextual information fusion. The experimental results show that the proposed algorithm reduces memory use by more than 70% and improves the processing speed of the infrared images by more than 24% compared with the comparison algorithm while ensuring that the corrected image has a clear texture, rich details, and sharp edges.

  • [1]
    樊凡. 基于场景的红外非均匀性校正算法研究[D]. 武汉: 华中科技大学, 2015.

    FAN Fan. Research on the Infrared Scene Based Nonuniformity Correction Algorithm[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [2]
    HOU Huixin, LI Qing, LIU Shangqian, et al. Nonuniformity and its correction principle of infrared focal plane arrays[J]. Laser & Infrared, 2003, 3(6): 46-48.
    [3]
    ZHOU Huixin, LI Qing, LIU Shangqian, et al. Nonuniformity and its correction principle of infrared focal plane arrays[J]. Laser & Infrared, 2003, 3(6): 46-48.
    [4]
    Scribner D A, Sarkady K A, Kruer M R, et al. Adaptive nonuniformity correction for IR focal-plane arrays using neural networks[C]//International Society for Optics and Photonics, 1991: 100-109.
    [5]
    牟新刚, 崔健, 周晓. 基于全卷积网络的红外图像非均匀性校正算法[J]. 红外技术, 2022, 44(1): 21-27. http://hwjs.nvir.cn/cn/article/id/1dc81b37-2449-459f-a97a-284832f6be2e

    MOU Xingang, CUI Jian, ZHOU Xiao. Infrared image non-uniformity correction algorithm based on full convolutional network[J]. Infrared Technology, 2022, 44(1): 21-27. http://hwjs.nvir.cn/cn/article/id/1dc81b37-2449-459f-a97a-284832f6be2e
    [6]
    陆俊杰. 基于深度学习的红外探测器非均匀性校正算法研究[D]. 武汉: 武汉理工大学, 2020.

    LU Junjie. Nonuniform Image Correction for Infrared Detector Based on Deep Learning[D]. Wuhan: Wuhan University of Technology, 2020.
    [7]
    HE Zewei, CAO Yanpeng, DONG Jiangxin, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach[J]. Applied Optics, 2018, 57(18): 155-164. DOI: 10.1364/AO.57.00D155
    [8]
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI, 2015: 234-241.
    [9]
    JIE H, LI S, GANG S. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(8): 2011-2023.
    [10]
    JIANG Y, TAN Z, WANG J, et al. GiraffeDet: a heavy-neck paradigm for object detection[J/OL]. arXiv, 2022, https://www.researchgate.net/publication/358493689_GiraffeDet_A_Heavy-Neck_Paradigm_for_Object_Detection.
    [11]
    LIU F, XU H, QI M, et al. Depth-wise separable convolution attention module for garbage image classification[J]. Sustainability, 2022, 14(5): 1-18.
    [12]
    Szegedy C, LIU W, JIA Y, et al. Going deeper with convolutions[J/OL]. IEEE Computer Society, 2014, https://ieeexplore.ieee.org/document/7298594.
    [13]
    Bal A, Alam M S. Automatic target tracking in FLIR image sequences[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2005, 54(5): 1846-1852.
    [14]
    Berg A, Ahlberg J, Felsberg M. A thermal object tracking benchmark[C]// IEEE International Conference on Advanced Video & Signal Based Surveillance, 2015, DOI: 10.1109/AVSS.2015.7301772.
    [15]
    Channappayya S S, Bovik A C, Heath R W. Rate bounds on SSIM index of quantized images[J]. IEEE Transactions on Image Processing, 2008, 17(9): 1624-1639. DOI: 10.1109/TIP.2008.2001400
    [16]
    Mathieu M, Couprie C, Lecun Y. Deep multi-scale video prediction beyond mean square error[C/OL]//ICLR, 2016, http://arxiv.org/pdf/1511.05440.pdf.
    [17]
    崔健. 基于深度学习的红外探测器非均匀性校正算法研究[D]. 武汉: 武汉理工大学, 2021.

    CUI Jian. Research on Non-Uniformity Correction Algorithm of Infrared Detector Based on Deep Learning[D]. Wuhan: Wuhan University of Technology, 2021.
    [18]
    Howard A G, ZHU M, Chen B. et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv preprint arXiv: 1704.04861, 2017, https://arxiv.org/abs/1704.04861.
    [19]
    Howard A, Sandler M, Chu G et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 1314-1324.
    [20]
    LIU Z, MAO H, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 11966-11976.
    [21]
    HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586.
    [22]
    ZUO C, CHEN Q, GU G, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Optical Review, 2011, 18: 197-202. DOI: 10.1007/s10043-011-0042-y
    [23]
    HE Zewei, CAO Yanpeng, DONG Yafei, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach[J]. Applied Optics, 2018, 57: D155-D164. DOI: 10.1364/AO.57.00D155
    [24]
    XU K, ZHAO Y, LI F, et al. Single infrared image stripe removal via deep multi-scale dense connection convolutional neural network[J]. Infrared Physics and Technology, 2022(121): 104008-104008. Doi: 10.1016/j. infrared.2021.104008.
  • Related Articles

    [1]YANG Yang, ZHOU Yingyue, HUANG Runxia, LIU Qi, HE Hongsen, LI Xiaoxia. Multimodal Biometric Identity-Recognition Method Based on Fused Hand Features[J]. Infrared Technology , 2025, 47(7): 906-917.
    [2]ZHAO Sihao, WANG Feng, YANG Juanjuan, PANG Yang, DANG Jianwu. Visible and Infrared Image Fusion for Road Crack Detection[J]. Infrared Technology , 2025, 47(7): 895-905.
    [3]HUANG Feiqing, GUO Baofeng, YOU Jingyun, WU Zhilong, WANG Yiwei, WANG Qinglin. A Feature Extraction Method of Hyperspectral Image with Multi-Scale Convolutional Filters[J]. Infrared Technology , 2025, 47(6): 712-721.
    [4]LIU Xin, ZHANG Bin. Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network[J]. Infrared Technology , 2025, 47(4): 445-452.
    [5]LI Ziqian, BAN Yanwameng, LIU Yun, HE Dong, DU Rucai. Visible and Infrared Image Matching Method Based on Multi-Scale Feature Point Extraction[J]. Infrared Technology , 2025, 47(3): 351-357.
    [6]QI Yanjie, HOU Qinhe. Infrared and Visible Image Fusion Combining Multi-scale and Convolutional Attention[J]. Infrared Technology , 2024, 46(9): 1060-1069.
    [7]LIANG Xiuman, ZHAO Jiayang, YU Haifeng. Lightweight Underwater Target Detection Algorithm Based on YOLOv8[J]. Infrared Technology , 2024, 46(9): 1015-1024.
    [8]CHONG Fating, DONG Zhangyu, YANG Xuezhi, ZENG Qingwang. SAR and Multispectral Image Fusion Based on Dual-channel Multi-scale Feature Extraction and Attention[J]. Infrared Technology , 2024, 46(1): 61-73.
    [9]WANG Fang, LI Chuanqiang, WU Bo, YU Kun, JIN Chan, CHEN Yake, LU Yinghui. Infrared Small Target Detection Method Based on Multi-Scale Feature Fusion[J]. Infrared Technology , 2021, 43(7): 688-695.
    [10]SUN Shixin, ZHENG Zhiyun. Genetic Algorithm for Infrared Multi-target Detection Based on Multi-scale NNLoG Feature[J]. Infrared Technology , 2019, 41(9): 837-842.
  • Cited by

    Periodical cited type(1)

    1. 于俊庭,李少毅,谢邦荣. 红外成像跟踪系统智能化技术研究综述. 红外与激光工程. 2025(05): 168-187 .

    Other cited types(0)

Catalog

    Article views (159) PDF downloads (71) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return