WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161.
Citation: WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161.

Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine

More Information
  • Received Date: January 05, 2020
  • Revised Date: January 30, 2020
  • Infrared images have a low resolution and a single color, but they play an important role in some scenes because they can be used under all weather conditions. This study adopts a support vector machine algorithm for long-wave infrared target image classification and recognition. The algorithm extracts edge and texture features, which are used as the recognition features of the target, and forwards them to a support vector machine. Then, the target category is output for infrared target recognition. Several models, such as the histogram of oriented gradient, gray level co-occurrence matrix, and support vector machine, are combined to collect images of eight types of target scenes for training and testing. The experimental results show that the algorithm can classify the same target person wearing different clothes with high accuracy and that it has a good classification effect on different target characters. Therefore, under certain scene conditions, this combined algorithm model can meet the needs and has certain advantages in the field of target recognition.
  • [1]
    曹凤杰. 红外图像人脸识别方法研究[D]. 西安: 西安电子科技大学, 2010.

    CAO Fengjie. Research on Infrared Image Face Recognition Method[D]. Xi'an: Xidian University, 2010.
    [2]
    Der S Z, Chellappa R. Probe-based automatic target recognition in infrared imagery[J]. IEEE Transactions on Image Processing, 1997, 6(1): 92-102. DOI: 10.1109/83.552099
    [3]
    姜锦锋. 红外图像的目标检测、识别与跟踪技术研究[D]. 西安: 西北工业大学, 2004.

    JIANG Jinfeng. Research on Target Detection, Recognition and Tracking Technology of Infrared Image[D]. Xi'an: Northwestern Polytechnical University, 2004.
    [4]
    郭济民. 基于深度神经网络的物体识别方法研究及实现[D]. 成都: 电子科技大学, 2018.

    GUO Jimin. Research and Implementation of Object Recognition Method Based on Deep Neural Network[D]. Chengdu: University of Electronic Science and Technology, 2018.
    [5]
    Abdulkadir Eryildirim, Ibrahim Onaran. Pulse Doppler radar target recognition using a two-stage SVM procedure[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1450-1457. DOI: 10.1109/TAES.2011.5751269
    [6]
    李小迷. 葡萄糖药液中异物目标视觉检测与识别方法研究[D]. 长沙: 湖南大学, 2010.

    LI Xiaomi. Research on Visual Inspection and Recognition Method of Foreign Objects in Glucose Liquid[D]. Changsha: Hunan University, 2010.
    [7]
    王朔琛, 汪西莉, 马君亮. 基于均值漂移的半监督支持向量机图像分类[J]. 计算机应用, 2014, 34(8): 2399-2403. DOI: 10.3969/j.issn.1001-3695.2014.08.038

    WANG Shuochen, WANG Xili, MA Junliang. Semi-supervised support vector machine image classification based on mean shift[J]. Journal of Computer Applications, 2014, 34(8): 2399-2403. DOI: 10.3969/j.issn.1001-3695.2014.08.038
    [8]
    丁方静. 室内监控中移动检测与跟踪算法的改进与实现[D]. 南京: 东南大学, 2017.

    DING Fangjing. Improvement and Implementation of Moving Detection and Tracking Algorithm in Indoor Monitoring[D]. Nanjing: Southeast University, 2017
    [9]
    卞海曼. 基于卷积神经网络的行人检测[D]. 合肥: 合肥工业大学, 2017.

    BIAN Haiman. Pedestrian Detection Based on Convolutional Neural Network[D]. Hefei: Hefei University of Technology, 2017.
    [10]
    Navneet Dalal, Bill Triggs. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
    [11]
    Minho J, Y Hee Yong, C Hsiao-Hwa. Intelligent RFID tag detection using support vector machine[J]. IEEE Transactions on Wireless Communications, 2009, 8(10): 5050-5059. DOI: 10.1109/TWC.2009.071198
    [12]
    WANG R P, CHEN J, SHAN S G, et al. Enhancing training set for face detection based on SVM[J]. Journal of Software, 2009, 19(11): 2921-2931. DOI: 10.3724/SP.J.1001.2008.02921
    [13]
    尤倩. 基于SVM的脱机手写体数字识别的研究与应用[D]. 济南: 山东师范大学, 2014.

    YOU Qian. Research and Application of Offline Handwritten Digit Recognition Based on SVM[D]. Jinan: Shandong Normal University, 2014.
    [14]
    张小琴, 赵池航, 沙月进. 基于HOG特征及支持向量机的车辆品牌识别方法[J]. 东南大学学报: 自然科学版, 2013, 43(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S2041.htm

    ZHANG Xiaoqin, ZHAO Chihang, SHA Yuejin. Vehicle brand recognition method based on HOG features and support vector machine[J]. Journal of Southeast University: Natural Science Edition, 2013, 43(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S2041.htm
    [15]
    LI Weixing, SU Haijun, PAN Feng, et al. A fast pedestrian detection via modified HOG feature[C]//Proceedings of the 34th Chinese Control Conference of IEEE, 2015: 3870-3873.
    [16]
    曾雪. 基于旋转不变梯度方向直方图的航拍图像目标检测[D]. 南京: 东南大学, 2017.

    ZENG Xue. Object Detection Based on Rotation Invariant Histogram of Oriented Gradient in Aerial Image[D]. Nanjing: Southeast University, 2017.
    [17]
    Alex Omid-Zohoor, Christopher Young, David Ta, et al. Toward always-on mobile object detection: energy versus performance tradeoffs for embedded HOG feature extraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(5): 1102-1115. DOI: 10.1109/TCSVT.2017.2653187
    [18]
    段嘉欣. 基于梯度下降的时变PID算法[J]. 中国新通信, 2019, 21(14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201914177.htm

    DUAN Jiaxin. Time-varying PID algorithm based on gradient descent[J]. China New Telecommunications, 2019, 21(14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201914177.htm
    [19]
    CHEN Pei-Yin, HUANG Chien-Chuan, Lien Chih-Yuan, et al. An efficient hardware implementation of HOG feature extraction for human detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 656-662. DOI: 10.1109/TITS.2013.2284666
    [20]
    HE Jiayuan, ZHU Xiangyang. Combining improved gray-level co-occurrence matrix with high density grid for myoelectric control robustness to electrode shift[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9): 1539-1548. DOI: 10.1109/TNSRE.2016.2644264
    [21]
    叶鹏, 王永芳, 夏雨蒙, 等. 一种融合深度基于灰度共生矩阵的感知模型[J]. 计算机科学, 2019, 46(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903012.htm

    YE Peng, WANG Yongfang, XIA Yumeng, et al. Perceptual model based on GLCM combined with depth[J]. Computer Science, 2019, 46(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903012.htm
    [22]
    王红, 武继刚, 张铮. 基于二维MB_LBP特征的人脸识别[J]. 计算机工程与应用, 2015, 51(10): 191-194. DOI: 10.3778/j.issn.1002-8331.1305-0396

    WANG Hong, WU Jigang, ZHANG Zheng. Face recognition based on 2-dimensional MB-LBP characteristics[J]. Computer Engineering and Applications, 2015, 51(10): 191-194. DOI: 10.3778/j.issn.1002-8331.1305-0396
    [23]
    Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the grey -level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519. DOI: 10.1109/TGRS.1990.572937
    [24]
    Simon D, Simon D L. Analytic confusion matrix bounds for fault detection and isolation using a sum-of-squared-residuals approach[J]. IEEE Transactions on Reliability, 2010, 59(2): 287-296. DOI: 10.1109/TR.2010.2046772
  • Related Articles

    [1]XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862.
    [2]ZHAO Tiancheng, LUO Lyu, YANG Daiyong, LIU He, YUAN Gang, XU Zhihao. A Multi-Attribute Fusion Method for Digitizing Infrared Thermal Characteristics of Power Equipment[J]. Infrared Technology , 2021, 43(11): 1097-1103.
    [3]YIN Aijun, YAO Wenjie. The Evaluation Method and Application of Hidden Markov in Eddy Current Thermal Imaging[J]. Infrared Technology , 2019, 41(12): 1141-1145,1150.
    [4]LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435.
    [5]XU Dehai, WEI Xueming, PENG Yao, MIAO Kang, REN Mingyi. Feature Extraction and Recognition of Ships by an Uncompleted Dictionary[J]. Infrared Technology , 2016, 38(9): 765-769.
    [6]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Based on MRF Combined with Two-algorithm Game[J]. Infrared Technology , 2015, (2): 134-138.
    [7]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Algorithm Based on MRF Combined with the Game-theory[J]. Infrared Technology , 2014, (10): 801-806.
    [8]CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007
    [9]A Tracking Method Based on Curve Fitting Prediction of IR Object[J]. Infrared Technology , 2003, 25(4): 23-25,31. DOI: 10.3969/j.issn.1001-8891.2003.04.006
    [10]Application of the Characteristic Extraction for the Detection of the Internal Micro Bulk Defects in Semiconducting Materials by Near Infrared Laser Scattering Light Distribution Analyze Technology[J]. Infrared Technology , 2002, 24(3): 23-26. DOI: 10.3969/j.issn.1001-8891.2002.03.006
  • Cited by

    Periodical cited type(4)

    1. 陈秋艳,贺敏,张新燕,陈泽锋,潘中清,罗睿. 基于图像处理的复杂场景火焰识别与火灾判定方法. 国外电子测量技术. 2024(05): 144-153 .
    2. 赵阳,刘俊蕾,付旭峰,王征,王海懿. 基于卷积神经网络的火焰智能识别研究. 自动化技术与应用. 2023(11): 64-67 .
    3. 常丽,张雪,蒋辉,杨娟,万紫玉. 融合YOLOv5s与SRGAN的实时隧道火灾检测. 电子测量与仪器学报. 2022(08): 223-230 .
    4. 马庆禄,马恋,孔国英,赵映慈. 基于红外热成像的隧道火焰检测技术研究. 火灾科学. 2022(04): 244-251 .

    Other cited types(6)

Catalog

    Article views (370) PDF downloads (65) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return