Citation: | WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161. |
[1] |
曹凤杰. 红外图像人脸识别方法研究[D]. 西安: 西安电子科技大学, 2010.
CAO Fengjie. Research on Infrared Image Face Recognition Method[D]. Xi'an: Xidian University, 2010.
|
[2] |
Der S Z, Chellappa R. Probe-based automatic target recognition in infrared imagery[J]. IEEE Transactions on Image Processing, 1997, 6(1): 92-102. DOI: 10.1109/83.552099
|
[3] |
姜锦锋. 红外图像的目标检测、识别与跟踪技术研究[D]. 西安: 西北工业大学, 2004.
JIANG Jinfeng. Research on Target Detection, Recognition and Tracking Technology of Infrared Image[D]. Xi'an: Northwestern Polytechnical University, 2004.
|
[4] |
郭济民. 基于深度神经网络的物体识别方法研究及实现[D]. 成都: 电子科技大学, 2018.
GUO Jimin. Research and Implementation of Object Recognition Method Based on Deep Neural Network[D]. Chengdu: University of Electronic Science and Technology, 2018.
|
[5] |
Abdulkadir Eryildirim, Ibrahim Onaran. Pulse Doppler radar target recognition using a two-stage SVM procedure[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1450-1457. DOI: 10.1109/TAES.2011.5751269
|
[6] |
李小迷. 葡萄糖药液中异物目标视觉检测与识别方法研究[D]. 长沙: 湖南大学, 2010.
LI Xiaomi. Research on Visual Inspection and Recognition Method of Foreign Objects in Glucose Liquid[D]. Changsha: Hunan University, 2010.
|
[7] |
王朔琛, 汪西莉, 马君亮. 基于均值漂移的半监督支持向量机图像分类[J]. 计算机应用, 2014, 34(8): 2399-2403. DOI: 10.3969/j.issn.1001-3695.2014.08.038
WANG Shuochen, WANG Xili, MA Junliang. Semi-supervised support vector machine image classification based on mean shift[J]. Journal of Computer Applications, 2014, 34(8): 2399-2403. DOI: 10.3969/j.issn.1001-3695.2014.08.038
|
[8] |
丁方静. 室内监控中移动检测与跟踪算法的改进与实现[D]. 南京: 东南大学, 2017.
DING Fangjing. Improvement and Implementation of Moving Detection and Tracking Algorithm in Indoor Monitoring[D]. Nanjing: Southeast University, 2017
|
[9] |
卞海曼. 基于卷积神经网络的行人检测[D]. 合肥: 合肥工业大学, 2017.
BIAN Haiman. Pedestrian Detection Based on Convolutional Neural Network[D]. Hefei: Hefei University of Technology, 2017.
|
[10] |
Navneet Dalal, Bill Triggs. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
|
[11] |
Minho J, Y Hee Yong, C Hsiao-Hwa. Intelligent RFID tag detection using support vector machine[J]. IEEE Transactions on Wireless Communications, 2009, 8(10): 5050-5059. DOI: 10.1109/TWC.2009.071198
|
[12] |
WANG R P, CHEN J, SHAN S G, et al. Enhancing training set for face detection based on SVM[J]. Journal of Software, 2009, 19(11): 2921-2931. DOI: 10.3724/SP.J.1001.2008.02921
|
[13] |
尤倩. 基于SVM的脱机手写体数字识别的研究与应用[D]. 济南: 山东师范大学, 2014.
YOU Qian. Research and Application of Offline Handwritten Digit Recognition Based on SVM[D]. Jinan: Shandong Normal University, 2014.
|
[14] |
张小琴, 赵池航, 沙月进. 基于HOG特征及支持向量机的车辆品牌识别方法[J]. 东南大学学报: 自然科学版, 2013, 43(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S2041.htm
ZHANG Xiaoqin, ZHAO Chihang, SHA Yuejin. Vehicle brand recognition method based on HOG features and support vector machine[J]. Journal of Southeast University: Natural Science Edition, 2013, 43(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S2041.htm
|
[15] |
LI Weixing, SU Haijun, PAN Feng, et al. A fast pedestrian detection via modified HOG feature[C]//Proceedings of the 34th Chinese Control Conference of IEEE, 2015: 3870-3873.
|
[16] |
曾雪. 基于旋转不变梯度方向直方图的航拍图像目标检测[D]. 南京: 东南大学, 2017.
ZENG Xue. Object Detection Based on Rotation Invariant Histogram of Oriented Gradient in Aerial Image[D]. Nanjing: Southeast University, 2017.
|
[17] |
Alex Omid-Zohoor, Christopher Young, David Ta, et al. Toward always-on mobile object detection: energy versus performance tradeoffs for embedded HOG feature extraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(5): 1102-1115. DOI: 10.1109/TCSVT.2017.2653187
|
[18] |
段嘉欣. 基于梯度下降的时变PID算法[J]. 中国新通信, 2019, 21(14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201914177.htm
DUAN Jiaxin. Time-varying PID algorithm based on gradient descent[J]. China New Telecommunications, 2019, 21(14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201914177.htm
|
[19] |
CHEN Pei-Yin, HUANG Chien-Chuan, Lien Chih-Yuan, et al. An efficient hardware implementation of HOG feature extraction for human detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 656-662. DOI: 10.1109/TITS.2013.2284666
|
[20] |
HE Jiayuan, ZHU Xiangyang. Combining improved gray-level co-occurrence matrix with high density grid for myoelectric control robustness to electrode shift[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9): 1539-1548. DOI: 10.1109/TNSRE.2016.2644264
|
[21] |
叶鹏, 王永芳, 夏雨蒙, 等. 一种融合深度基于灰度共生矩阵的感知模型[J]. 计算机科学, 2019, 46(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903012.htm
YE Peng, WANG Yongfang, XIA Yumeng, et al. Perceptual model based on GLCM combined with depth[J]. Computer Science, 2019, 46(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903012.htm
|
[22] |
王红, 武继刚, 张铮. 基于二维MB_LBP特征的人脸识别[J]. 计算机工程与应用, 2015, 51(10): 191-194. DOI: 10.3778/j.issn.1002-8331.1305-0396
WANG Hong, WU Jigang, ZHANG Zheng. Face recognition based on 2-dimensional MB-LBP characteristics[J]. Computer Engineering and Applications, 2015, 51(10): 191-194. DOI: 10.3778/j.issn.1002-8331.1305-0396
|
[23] |
Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the grey -level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519. DOI: 10.1109/TGRS.1990.572937
|
[24] |
Simon D, Simon D L. Analytic confusion matrix bounds for fault detection and isolation using a sum-of-squared-residuals approach[J]. IEEE Transactions on Reliability, 2010, 59(2): 287-296. DOI: 10.1109/TR.2010.2046772
|
[1] | GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210. |
[2] | JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256. |
[3] | HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088. |
[4] | CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403. |
[5] | CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088. |
[6] | HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915. |
[7] | GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169. |
[8] | GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454. |
[9] | GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097. |
[10] | LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927. |
1. |
朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
![]() | |
2. |
张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
![]() | |
3. |
陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 .
![]() | |
4. |
李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
![]() | |
5. |
李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 .
![]() | |
6. |
李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 .
![]() | |
7. |
孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
![]() | |
8. |
赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .
![]() |