WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161.
Citation: WANG Zhouchun, CUI Wennan, ZHANG Tao. Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine[J]. Infrared Technology , 2021, 43(2): 153-161.

Classification and Recognition Algorithm for Long-wave Infrared Targets Based on Support Vector Machine

More Information
  • Received Date: January 05, 2020
  • Revised Date: January 30, 2020
  • Infrared images have a low resolution and a single color, but they play an important role in some scenes because they can be used under all weather conditions. This study adopts a support vector machine algorithm for long-wave infrared target image classification and recognition. The algorithm extracts edge and texture features, which are used as the recognition features of the target, and forwards them to a support vector machine. Then, the target category is output for infrared target recognition. Several models, such as the histogram of oriented gradient, gray level co-occurrence matrix, and support vector machine, are combined to collect images of eight types of target scenes for training and testing. The experimental results show that the algorithm can classify the same target person wearing different clothes with high accuracy and that it has a good classification effect on different target characters. Therefore, under certain scene conditions, this combined algorithm model can meet the needs and has certain advantages in the field of target recognition.
  • [1]
    曹凤杰. 红外图像人脸识别方法研究[D]. 西安: 西安电子科技大学, 2010.

    CAO Fengjie. Research on Infrared Image Face Recognition Method[D]. Xi'an: Xidian University, 2010.
    [2]
    Der S Z, Chellappa R. Probe-based automatic target recognition in infrared imagery[J]. IEEE Transactions on Image Processing, 1997, 6(1): 92-102. DOI: 10.1109/83.552099
    [3]
    姜锦锋. 红外图像的目标检测、识别与跟踪技术研究[D]. 西安: 西北工业大学, 2004.

    JIANG Jinfeng. Research on Target Detection, Recognition and Tracking Technology of Infrared Image[D]. Xi'an: Northwestern Polytechnical University, 2004.
    [4]
    郭济民. 基于深度神经网络的物体识别方法研究及实现[D]. 成都: 电子科技大学, 2018.

    GUO Jimin. Research and Implementation of Object Recognition Method Based on Deep Neural Network[D]. Chengdu: University of Electronic Science and Technology, 2018.
    [5]
    Abdulkadir Eryildirim, Ibrahim Onaran. Pulse Doppler radar target recognition using a two-stage SVM procedure[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1450-1457. DOI: 10.1109/TAES.2011.5751269
    [6]
    李小迷. 葡萄糖药液中异物目标视觉检测与识别方法研究[D]. 长沙: 湖南大学, 2010.

    LI Xiaomi. Research on Visual Inspection and Recognition Method of Foreign Objects in Glucose Liquid[D]. Changsha: Hunan University, 2010.
    [7]
    王朔琛, 汪西莉, 马君亮. 基于均值漂移的半监督支持向量机图像分类[J]. 计算机应用, 2014, 34(8): 2399-2403. DOI: 10.3969/j.issn.1001-3695.2014.08.038

    WANG Shuochen, WANG Xili, MA Junliang. Semi-supervised support vector machine image classification based on mean shift[J]. Journal of Computer Applications, 2014, 34(8): 2399-2403. DOI: 10.3969/j.issn.1001-3695.2014.08.038
    [8]
    丁方静. 室内监控中移动检测与跟踪算法的改进与实现[D]. 南京: 东南大学, 2017.

    DING Fangjing. Improvement and Implementation of Moving Detection and Tracking Algorithm in Indoor Monitoring[D]. Nanjing: Southeast University, 2017
    [9]
    卞海曼. 基于卷积神经网络的行人检测[D]. 合肥: 合肥工业大学, 2017.

    BIAN Haiman. Pedestrian Detection Based on Convolutional Neural Network[D]. Hefei: Hefei University of Technology, 2017.
    [10]
    Navneet Dalal, Bill Triggs. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
    [11]
    Minho J, Y Hee Yong, C Hsiao-Hwa. Intelligent RFID tag detection using support vector machine[J]. IEEE Transactions on Wireless Communications, 2009, 8(10): 5050-5059. DOI: 10.1109/TWC.2009.071198
    [12]
    WANG R P, CHEN J, SHAN S G, et al. Enhancing training set for face detection based on SVM[J]. Journal of Software, 2009, 19(11): 2921-2931. DOI: 10.3724/SP.J.1001.2008.02921
    [13]
    尤倩. 基于SVM的脱机手写体数字识别的研究与应用[D]. 济南: 山东师范大学, 2014.

    YOU Qian. Research and Application of Offline Handwritten Digit Recognition Based on SVM[D]. Jinan: Shandong Normal University, 2014.
    [14]
    张小琴, 赵池航, 沙月进. 基于HOG特征及支持向量机的车辆品牌识别方法[J]. 东南大学学报: 自然科学版, 2013, 43(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S2041.htm

    ZHANG Xiaoqin, ZHAO Chihang, SHA Yuejin. Vehicle brand recognition method based on HOG features and support vector machine[J]. Journal of Southeast University: Natural Science Edition, 2013, 43(2): 410-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S2041.htm
    [15]
    LI Weixing, SU Haijun, PAN Feng, et al. A fast pedestrian detection via modified HOG feature[C]//Proceedings of the 34th Chinese Control Conference of IEEE, 2015: 3870-3873.
    [16]
    曾雪. 基于旋转不变梯度方向直方图的航拍图像目标检测[D]. 南京: 东南大学, 2017.

    ZENG Xue. Object Detection Based on Rotation Invariant Histogram of Oriented Gradient in Aerial Image[D]. Nanjing: Southeast University, 2017.
    [17]
    Alex Omid-Zohoor, Christopher Young, David Ta, et al. Toward always-on mobile object detection: energy versus performance tradeoffs for embedded HOG feature extraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(5): 1102-1115. DOI: 10.1109/TCSVT.2017.2653187
    [18]
    段嘉欣. 基于梯度下降的时变PID算法[J]. 中国新通信, 2019, 21(14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201914177.htm

    DUAN Jiaxin. Time-varying PID algorithm based on gradient descent[J]. China New Telecommunications, 2019, 21(14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-TXWL201914177.htm
    [19]
    CHEN Pei-Yin, HUANG Chien-Chuan, Lien Chih-Yuan, et al. An efficient hardware implementation of HOG feature extraction for human detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 656-662. DOI: 10.1109/TITS.2013.2284666
    [20]
    HE Jiayuan, ZHU Xiangyang. Combining improved gray-level co-occurrence matrix with high density grid for myoelectric control robustness to electrode shift[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9): 1539-1548. DOI: 10.1109/TNSRE.2016.2644264
    [21]
    叶鹏, 王永芳, 夏雨蒙, 等. 一种融合深度基于灰度共生矩阵的感知模型[J]. 计算机科学, 2019, 46(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903012.htm

    YE Peng, WANG Yongfang, XIA Yumeng, et al. Perceptual model based on GLCM combined with depth[J]. Computer Science, 2019, 46(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903012.htm
    [22]
    王红, 武继刚, 张铮. 基于二维MB_LBP特征的人脸识别[J]. 计算机工程与应用, 2015, 51(10): 191-194. DOI: 10.3778/j.issn.1002-8331.1305-0396

    WANG Hong, WU Jigang, ZHANG Zheng. Face recognition based on 2-dimensional MB-LBP characteristics[J]. Computer Engineering and Applications, 2015, 51(10): 191-194. DOI: 10.3778/j.issn.1002-8331.1305-0396
    [23]
    Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the grey -level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519. DOI: 10.1109/TGRS.1990.572937
    [24]
    Simon D, Simon D L. Analytic confusion matrix bounds for fault detection and isolation using a sum-of-squared-residuals approach[J]. IEEE Transactions on Reliability, 2010, 59(2): 287-296. DOI: 10.1109/TR.2010.2046772
  • Related Articles

    [1]GONG Jiamin, ZHANG Lei, LIU Shanghui, JIANG Jiewei, JIN Ku. Image Fusion Based on Simplified Two-Dimensional Kaniadakis Entropy Segmentation Algorithm and Fast Guided Filtering[J]. Infrared Technology , 2025, 47(2): 201-210.
    [2]JIANG Jiewei, LIU Shanghui, JIN Ku, LIU Haiyang, WEI Xumeng, GONG Jiamin. Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering[J]. Infrared Technology , 2023, 45(3): 249-256.
    [3]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [4]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [5]CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088.
    [6]HUANG Zhihong, WU Sheng, XIAO Jian, ZHANG Keren, HUANG Wei. Thermal Fault Diagnosis of Power Equipments Based on Guided Filter[J]. Infrared Technology , 2021, 43(9): 910-915.
    [7]GE Peng, YANG Bo, HAN Qinglin, LIU Peng, CHEN Shugang, HU Douming, ZHANG Qiaoyan. Infrared Image Detail Enhancement Algorithm Based on Hierarchical Processing by Guided Image Filter[J]. Infrared Technology , 2018, 40(12): 1161-1169.
    [8]GAN Ling, ZHANG Qianwen. Image Fusion Method Combining Non-subsampled Contourlet Transform and Guide Filtering[J]. Infrared Technology , 2018, 40(5): 444-448,454.
    [9]GE Peng, YANG Bo, MAO Wenbiao, CHEN Shaolin, ZHANG Qiaoyan, HAN Qinglin. High Dynamic Range Infrared Image Enhancement Algorithm Based on Guided Image Filter[J]. Infrared Technology , 2017, 39(12): 1092-1097.
    [10]LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927.
  • Cited by

    Periodical cited type(8)

    1. 朱亚辉. NSCT框架下动静态联合滤波的红外与可见光图像融合方法. 电脑知识与技术. 2024(08): 1-4 .
    2. 张剑,高云,何栋. 基于离散2-D小波多级分解的电容器外观缺陷视觉检测方法. 电子器件. 2024(05): 1255-1260 .
    3. 陈超洋,姜媛媛. 基于深度图像分解的红外与可见光图像融合. 红外技术. 2024(12): 1362-1370 . 本站查看
    4. 李晨,侯进,李金彪,陈子锐. 基于注意力与残差级联的红外与可见光图像融合方法. 计算机工程. 2022(07): 234-240 .
    5. 李文,叶坤涛,舒蕾蕾,李晟. 基于高斯模糊逻辑和ADCSCM的红外与可见光图像融合算法. 红外技术. 2022(07): 693-701 . 本站查看
    6. 李永萍,杨艳春,党建武,王阳萍. 基于变换域VGGNet19的红外与可见光图像融合. 红外技术. 2022(12): 1293-1300 . 本站查看
    7. 孙学蕾,高宏伟. 改进小波变换的红外与可见光融合方法研究. 沈阳理工大学学报. 2021(03): 19-23+28 .
    8. 赵汝海,汪方斌. 基于灰度和信息熵融合的金属疲劳偏振热像分割算法. 激光与光电子学进展. 2021(24): 260-271 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return