WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.
Citation: WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.

Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm

More Information
  • Received Date: June 01, 2022
  • Revised Date: August 01, 2022
  • A joint likelihood drop shadow construction method for the selection of a bimodal infrared image fusion algorithm is proposed. It aims at the demand for the cooperative and optimal fusion of dissimilar disparity features in real scenes of bimodal infrared image fusion and the limitation that the existing disparity feature attributes cannot be effectively driven by the targeted adjustment of the fusion algorithm according to the changes in multiple attributes of the disparity features, resulting in a poor fusion effect. First, we calculate the fusion effectiveness of different disparity features under the multimodal infrared image fusion algorithm and statistical disparity feature distribution characteristics. We then construct the likelihood distribution of the disparity feature fusion effectiveness and fit the likelihood distribution function by the least squares estimation method. Subsequently, we compare and analyze the likelihood distribution of different disparity feature fusion effectiveness by the merit comparison method and determine the projection weights of the disparity feature likelihood distribution function. Finally, we analyze the intercept level of the joint possibility drop shadow function and construct the optimal fusion algorithm by combining the characteristics of the distribution of different features to dynamically select the fusion performance index. The experimental results show that the optimal fusion algorithm selected in this study outperforms other algorithms in terms of subjective and objective analyses, which verifies the effectiveness and rationality of applying the joint likelihood drop shadow to the selection of an optimal fusion algorithm for bimodal infrared images.
  • [1]
    段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003

    DUAN Jin, FU Qiang, MO Chunhe, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003
    [2]
    韩平丽. 红外辐射偏振特性及目标识别研究[D]. 西安: 西安电子科技大学, 2014.

    HAN Pingli. Study on Polarization Characteristics and Target Recognition of Infrared Radiation [D]. Xi 'an: Xidian University, 2014.
    [3]
    朱攀. 红外与红外偏振/可见光图像融合算法研究[D]. 天津: 天津大学, 2017.

    ZHU Pan. Study on Fusion Algorithm for Infrared and Infrared Polarization/Visible Images[D]. Tianjin: Tianjin University, 2017.
    [4]
    LIN Suzhen, WANG Dongjuan, ZHU Xiaohong, et al. Fusion of infrared intensity and polarization images using embedded multi-scale transform[J]. Optik-International Journal for Light and Electron Optics, 2015, 126: 5127-5133. DOI: 10.1016/j.ijleo.2015.09.154
    [5]
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm

    ZHU Pan, LIU Zeyang, HUANG Zhanhua. Infrared polarization and light intensity image fusion based on dual-tree complex wavelet transform and sparse representation [J]. Acta Photonica Sinica, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm
    [6]
    LIU Z, Tsukada K, Hanasaki K, et al. Image fusion by using steerable pyramid[J]. Pattern Recognition Letters, 2001, 22(9): 929-939. DOI: 10.1016/S0167-8655(01)00047-2
    [7]
    Vanmali A V, Gadre V M. Visible and NIR image fusion using weight-map-guided Laplacian-Gaussian pyramid for improving scene visibility[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2017, 42(7): 1063-1082.
    [8]
    LIU Gang, JING Zhongliang, SUN Shaoyuan, et al. Image fusion based on expectation maximization algorithm and steerable pyramid[J]. Chinese Optics Letters, 2004(7): 386-389.
    [9]
    徐磊, 田淑昌, 崔灿, 等. 基于改进离散小波变换的多模态医学图像融合方法[J]. 中国医疗设备, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm

    XU Lei, TIAN Shuchang, CUI Can, et al. Multimodal medical image fusion method based on improved discrete wavelet transform[J]. China Medical Equipment, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm
    [10]
    HAN Xiao, ZHANG Lili, YAO Li, et al. Fusion of infrared and visible images based on discrete wavelet transform[C]//Proceedings of the Second Symposium on New Detection Technology and Its Application, National Defense Optoelectronics Forum, 2015: 38.
    [11]
    YAN X, QIN H, LI J, et al. Infrared and visible image fusion with spectral graph wavelet transform[J]. JOSAA, 2015, 32(9): 1643-1652. DOI: 10.1364/JOSAA.32.001643
    [12]
    ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers (Taiwan), 2017, 28(2): 57-71.
    [13]
    MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [14]
    杨风暴, 吉琳娜. 双模态红外图像差异特征多属性与融合算法间的深度集值映射研究[J]. 指挥控制与仿真, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm

    YANG Fengbao, JI Linna. Research on depth set value mapping between multi-attribute and fusion algorithm of dual-mode infrared image difference feature [J]. Command Control and Simulation, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm
    [15]
    张雷, 杨风暴, 吉琳娜. 差异特征指数测度的红外偏振与光强图像多算法融合[J]. 火力与指挥控制, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm

    ZHANG Lei, YANG Fengbao, JI Linna. Multi-algorithm fusion of infrared polarization and light intensity images based on differential feature index measure [J]. Fire Control & Command Control, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm
    [16]
    杨风暴, 吉琳娜, 王肖霞. 可能性理论及应用[M]. 北京: 科学出版社, 2019.

    YANG Fengbao, JI Linna, WANG Xiaoxia. Possibility Theory and Application [M]. Beijing: Science Press, 2019.
    [17]
    LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35: 102-116.
    [18]
    Toet A, Hogervorst M A. Multiscale image fusion through guided filtering[C]//Proceedings of SPIE, 2016: 99970J.
    [19]
    SONG Y, XIAO J, YANG J, et al. Research on MR-SVD based visual and infrared image fusion[C]//Proceedings of the International Symposium on Optoelectronic Technology and Application, 2016: 101571.
    [20]
    ZHANG W J, KANG J Y. QuickBird panchromatic and multi-spectral image fusion using wavelet packet transform[C]//International Conference on Intelligent Computing (ICIC), 2006, 344: 976-981.
    [21]
    Roberts J W, Van Aardt J, Ahmed F. Assessment of image fusion procedures using entropy image quality and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522.
    [22]
    Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Trans. Commun., 1995, 43(12): 2959-2965.
    [23]
    CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209.
    [24]
    Ratliff B M, LeMaster D A. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data[C]//Polarization: Measurement, Analysis, and Remote Sensing X, 2012, 8364: 83640N.
    [25]
    ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [26]
    QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
    [27]
    ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process, 2004, 13(4): 600-612.
  • Related Articles

    [1]CHEN Xiaohan, XU Yuanyuan. Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO[J]. Infrared Technology , 2025, 47(4): 459-467.
    [2]LIU Xin, ZHANG Bin. Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network[J]. Infrared Technology , 2025, 47(4): 445-452.
    [3]YE Baicheng, ZHU Youpan, ZHOU Yongkang, DUAN Chenhao, ZHANG Yudong, TAO Zhigang, FU Zhiyu. Review of Lightweight Target Detection Algorithms[J]. Infrared Technology , 2025, 47(3): 289-298.
    [4]CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight Infrared Target Detection Algorithm Based on YOLO v7[J]. Infrared Technology , 2024, 46(12): 1380-1389.
    [5]SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology , 2024, 46(2): 162-167.
    [6]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [7]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [8]SUN Shixin, ZHENG Zhiyun. Genetic Algorithm for Infrared Multi-target Detection Based on Multi-scale NNLoG Feature[J]. Infrared Technology , 2019, 41(9): 837-842.
    [9]SHEN Xu, CHENG Xiaohui, WANG Xinzheng. Infrared Dim-small Object Detection Algorithm Based on Adaptive Scale Local Contrast Enhancement Combined with Visual Attention Mechanism[J]. Infrared Technology , 2019, 41(8): 764-771.
    [10]WANG Yu-xiang, HAN Zhen-duo, WANG Hong-min. Detection Algorithm for Dim Infrared Target Based on Multi-Difference Factor[J]. Infrared Technology , 2012, 34(6): 351-355. DOI: 10.3969/j.issn.1001-8891.2012.06.009
  • Cited by

    Periodical cited type(5)

    1. 李鹏. 基于红外测温技术的农村配网设备运行监测研究. 中国新技术新产品. 2025(03): 127-129 .
    2. 樊慧文. 深度学习在输变电设备故障状态检测中的应用研究. 电工技术. 2025(02): 95-97+101 .
    3. 刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
    4. 李冰,杜喜英,王玉莹,翟永杰. 基于改进YOLOv8n的变电设备红外图像实例分割算法. 电子测量技术. 2024(10): 151-159 .
    5. 佟忠正,孙旸子. 基于U-Net网络的电力设备巡检图像增强模型及其自动控制研究. 自动化与仪表. 2024(11): 79-82+91 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return