WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.
Citation: WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.

Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm

More Information
  • Received Date: June 01, 2022
  • Revised Date: August 01, 2022
  • A joint likelihood drop shadow construction method for the selection of a bimodal infrared image fusion algorithm is proposed. It aims at the demand for the cooperative and optimal fusion of dissimilar disparity features in real scenes of bimodal infrared image fusion and the limitation that the existing disparity feature attributes cannot be effectively driven by the targeted adjustment of the fusion algorithm according to the changes in multiple attributes of the disparity features, resulting in a poor fusion effect. First, we calculate the fusion effectiveness of different disparity features under the multimodal infrared image fusion algorithm and statistical disparity feature distribution characteristics. We then construct the likelihood distribution of the disparity feature fusion effectiveness and fit the likelihood distribution function by the least squares estimation method. Subsequently, we compare and analyze the likelihood distribution of different disparity feature fusion effectiveness by the merit comparison method and determine the projection weights of the disparity feature likelihood distribution function. Finally, we analyze the intercept level of the joint possibility drop shadow function and construct the optimal fusion algorithm by combining the characteristics of the distribution of different features to dynamically select the fusion performance index. The experimental results show that the optimal fusion algorithm selected in this study outperforms other algorithms in terms of subjective and objective analyses, which verifies the effectiveness and rationality of applying the joint likelihood drop shadow to the selection of an optimal fusion algorithm for bimodal infrared images.
  • [1]
    段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003

    DUAN Jin, FU Qiang, MO Chunhe, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003
    [2]
    韩平丽. 红外辐射偏振特性及目标识别研究[D]. 西安: 西安电子科技大学, 2014.

    HAN Pingli. Study on Polarization Characteristics and Target Recognition of Infrared Radiation [D]. Xi 'an: Xidian University, 2014.
    [3]
    朱攀. 红外与红外偏振/可见光图像融合算法研究[D]. 天津: 天津大学, 2017.

    ZHU Pan. Study on Fusion Algorithm for Infrared and Infrared Polarization/Visible Images[D]. Tianjin: Tianjin University, 2017.
    [4]
    LIN Suzhen, WANG Dongjuan, ZHU Xiaohong, et al. Fusion of infrared intensity and polarization images using embedded multi-scale transform[J]. Optik-International Journal for Light and Electron Optics, 2015, 126: 5127-5133. DOI: 10.1016/j.ijleo.2015.09.154
    [5]
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm

    ZHU Pan, LIU Zeyang, HUANG Zhanhua. Infrared polarization and light intensity image fusion based on dual-tree complex wavelet transform and sparse representation [J]. Acta Photonica Sinica, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm
    [6]
    LIU Z, Tsukada K, Hanasaki K, et al. Image fusion by using steerable pyramid[J]. Pattern Recognition Letters, 2001, 22(9): 929-939. DOI: 10.1016/S0167-8655(01)00047-2
    [7]
    Vanmali A V, Gadre V M. Visible and NIR image fusion using weight-map-guided Laplacian-Gaussian pyramid for improving scene visibility[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2017, 42(7): 1063-1082.
    [8]
    LIU Gang, JING Zhongliang, SUN Shaoyuan, et al. Image fusion based on expectation maximization algorithm and steerable pyramid[J]. Chinese Optics Letters, 2004(7): 386-389.
    [9]
    徐磊, 田淑昌, 崔灿, 等. 基于改进离散小波变换的多模态医学图像融合方法[J]. 中国医疗设备, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm

    XU Lei, TIAN Shuchang, CUI Can, et al. Multimodal medical image fusion method based on improved discrete wavelet transform[J]. China Medical Equipment, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm
    [10]
    HAN Xiao, ZHANG Lili, YAO Li, et al. Fusion of infrared and visible images based on discrete wavelet transform[C]//Proceedings of the Second Symposium on New Detection Technology and Its Application, National Defense Optoelectronics Forum, 2015: 38.
    [11]
    YAN X, QIN H, LI J, et al. Infrared and visible image fusion with spectral graph wavelet transform[J]. JOSAA, 2015, 32(9): 1643-1652. DOI: 10.1364/JOSAA.32.001643
    [12]
    ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers (Taiwan), 2017, 28(2): 57-71.
    [13]
    MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [14]
    杨风暴, 吉琳娜. 双模态红外图像差异特征多属性与融合算法间的深度集值映射研究[J]. 指挥控制与仿真, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm

    YANG Fengbao, JI Linna. Research on depth set value mapping between multi-attribute and fusion algorithm of dual-mode infrared image difference feature [J]. Command Control and Simulation, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm
    [15]
    张雷, 杨风暴, 吉琳娜. 差异特征指数测度的红外偏振与光强图像多算法融合[J]. 火力与指挥控制, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm

    ZHANG Lei, YANG Fengbao, JI Linna. Multi-algorithm fusion of infrared polarization and light intensity images based on differential feature index measure [J]. Fire Control & Command Control, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm
    [16]
    杨风暴, 吉琳娜, 王肖霞. 可能性理论及应用[M]. 北京: 科学出版社, 2019.

    YANG Fengbao, JI Linna, WANG Xiaoxia. Possibility Theory and Application [M]. Beijing: Science Press, 2019.
    [17]
    LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35: 102-116.
    [18]
    Toet A, Hogervorst M A. Multiscale image fusion through guided filtering[C]//Proceedings of SPIE, 2016: 99970J.
    [19]
    SONG Y, XIAO J, YANG J, et al. Research on MR-SVD based visual and infrared image fusion[C]//Proceedings of the International Symposium on Optoelectronic Technology and Application, 2016: 101571.
    [20]
    ZHANG W J, KANG J Y. QuickBird panchromatic and multi-spectral image fusion using wavelet packet transform[C]//International Conference on Intelligent Computing (ICIC), 2006, 344: 976-981.
    [21]
    Roberts J W, Van Aardt J, Ahmed F. Assessment of image fusion procedures using entropy image quality and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522.
    [22]
    Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Trans. Commun., 1995, 43(12): 2959-2965.
    [23]
    CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209.
    [24]
    Ratliff B M, LeMaster D A. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data[C]//Polarization: Measurement, Analysis, and Remote Sensing X, 2012, 8364: 83640N.
    [25]
    ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [26]
    QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
    [27]
    ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process, 2004, 13(4): 600-612.
  • Related Articles

    [1]FENG Hongwei, LIU Yuanyuan, WEN Ziteng, TAN Yong. Recognition Algorithm for an Infrared Flame Detector Based on an Improved Takagi-Sugeno Fuzzy Radial Basis Function Neural Network[J]. Infrared Technology , 2021, 43(1): 37-43.
    [2]HAO Zhenghui, ZHANG Xuesong, WANG Gao, DENG Fangfang, WEI Xuan, YUAN Dongfang. Auto Focusing Evaluation Function Based on Edge Contour Extraction[J]. Infrared Technology , 2018, 40(2): 170-175.
    [3]PAN Xuejuan, ZHU Youpan, PAN Chao, XIA Likun, ZENG Bangze, LUO Lin, ZHAO Deli, LI Zemin. The Influence of Energy Fluctuation of Image on Auto Focus Sharpness Evaluation Function[J]. Infrared Technology , 2016, 38(12): 1032-1037.
    [4]ZHAO Xiaoli, ZHOU Pucheng, XUE Mogen. A Kind of Infrared Image Segment Method Using Improved Chan-Vese Model[J]. Infrared Technology , 2016, 38(9): 774-778.
    [5]GUO Jingbin, FENG Huajie, WANG Long, PENG Qinjian, LI Xingfei. Design of Focusing Window Based on Energy Function of Gradient[J]. Infrared Technology , 2016, 38(3): 197-202.
    [6]YU Hao, LIU Bing-qi, YING Jia-ju, HU Wen-gang. One-Dimension Image Edge Detection Method Based on Sigmoidal Function Fitting[J]. Infrared Technology , 2014, (10): 816-819.
    [7]LIU En-fan, YANG Jiu-cheng, SHI Wen-jun, XU Guo-qiang. An Infrared Image Segmentation Approach based on Improved Chan-Vese Model[J]. Infrared Technology , 2011, 33(9): 545-551. DOI: 10.3969/j.issn.1001-8891.2011.09.013
    [8]WEI Tong-lei, ZENG Qing-ping, ZHOU Yan, BAI Bin. A Method for Radial Moving Small Targets Detecting[J]. Infrared Technology , 2007, 29(12): 712-715. DOI: 10.3969/j.issn.1001-8891.2007.12.008
    [9]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
    [10]YU Rui-xing, LI Yan-jun, ZHANG Ke. Infrared Image Edge Detection Using Improved Bubble Function[J]. Infrared Technology , 2006, 28(1): 36-38. DOI: 10.3969/j.issn.1001-8891.2006.01.009
  • Cited by

    Periodical cited type(1)

    1. 肖沁,李正周,刘海毅. 基于场景自适应方向引导滤波的红外成像非均匀性校正方法. 光子学报. 2024(11): 253-265 .

    Other cited types(2)

Catalog

    Article views (134) PDF downloads (36) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return