ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin. Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films[J]. Infrared Technology , 2022, 44(2): 103-114.
Citation: ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin. Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films[J]. Infrared Technology , 2022, 44(2): 103-114.

Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films

More Information
  • Received Date: January 24, 2022
  • Revised Date: February 08, 2022
  • Quantum dots (QDs), which are also known as semiconductor nanocrystals, have been widely applied in the design and development of photoelectric detectors and solar cells because of their low manufacturing cost and unique optical properties. The synthesis of QDs is an important component in the preparation of photodetectors and solar cells. In this review, several different QD synthesis technologies, various QD-based photodetectors and solar cells are summarized, and the advantages and disadvantages of different types of QD films are compared. Lastly, we investigated the development of QD films.
  • [1]
    LI Y, DING Y, ZHANG Y, et al. Photophysical properties of ZnS quantum dots[J]. Journal of Physics and Chemistry of Solids, 1999, 60(1): 13-15. DOI: 10.1016/S0022-3697(98)00247-9
    [2]
    Albaladejo-Siguan M, Baird E C, Becker-Koch D, et al. Stability of quantum dot solar cells: a matter of (life)time[J]. Adv. Energy Mater, 2021, 11(12): 2003457. DOI: 10.1002/aenm.202003457
    [3]
    Efros A L, Brus L E. Nanocrystal quantum dots: from discovery to modern development[J]. ACS Nano, 2021, 15(4): 6192-6210. DOI: 10.1021/acsnano.1c01399
    [4]
    ZHENG S, CHEN J, Johansson E M J, et al. PbS colloidal quantum dot inks for infrared solar cells[J]. I Science, 2020, 23(11): 101753.
    [5]
    Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Adv. Mater. 2015, 27(1): 176-180.
    [6]
    Kim B J, Park S, Kim T Y, et al. Improving the photoresponsivity and reducing the persistent photocurrent effect of visible-light ZnO/quantum-dot phototransistors via a TiO2layer[J]. J. Mater. Chem. C, 2020, 8(46): 16384. DOI: 10.1039/D0TC03353G
    [7]
    ZHAO C, LIU Y, CHEN L Y, et al. Transparent CsPbBr3quantum dot photodetector with a vertical transistor structure[J]. ACS Appl. Electron. Mater., 2021, 3(1): 337-343. DOI: 10.1021/acsaelm.0c00877
    [8]
    Pak S, Cho Y, Hong J, et al. Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot photo-transistors[J]. ACS. Appl. Mater. Interfaces, 2018, 10(44): 38264-38271. DOI: 10.1021/acsami.8b14408
    [9]
    Kufer D, Lasanta T, Bernechea M, et al. Interface engineering in hybrid quantum dot−2D phototransistors[J]. ACS Photonics, 2016, 3(7): 1324-1330. DOI: 10.1021/acsphotonics.6b00299
    [10]
    Zdemir O, Ramiro I, Gupta S, et al. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm[J]. ACS Photonics, 2019, 6(10): 2381-2386. DOI: 10.1021/acsphotonics.9b00870
    [11]
    WANG X, XU K, YAN X, et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors[J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8403-8410. DOI: 10.1021/acsami.9b19486
    [12]
    ZHANG J, XU J, CHEN T, et al. Toward broadband imaging: surface-engineered PbS quantum dot/perovskite composite integrated ultra- sensitive photodetectors[J]. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430-44437. DOI: 10.1021/acsami.9b14645
    [13]
    TANG X, Ackerman M M, SHEN G, et al. Towards infrared electronic eyes: flexible colloidal quantum dots photovoltaic detectors enhanced by resonant cavity[J]. Small, 2019, 15(12): 1804920. DOI: 10.1002/smll.201804920
    [14]
    Manders J R, LAI T H, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24(45): 7205-7210. http://www.researchgate.net/profile/Yanbin_An/publication/265645931_Low-Noise_Multispectral_Photodetectors_Made_from_All_Solution-Processed_Inorganic_Semiconductors/links/56323fd908ae242468d9c907.pdf
    [15]
    Choi H T, KANG J H, Ahn J, et al. Zero-dimensional PbS quantum dot−InGaZnO film heterostructure for short-wave infrared flat-panel imager[J]. ACS Photonics, 2020, 7(8): 1932-1941. DOI: 10.1021/acsphotonics.0c00594
    [16]
    HU C, DONG D, YANG X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2toward high performance and broadband phototransistors[J]. Adv. Funct. Mater., 2016, 27(2): 1603605. http://d.wanfangdata.com.cn/periodical/3f27bb3093bd0e5e84f5ab294b6ef2aa
    [17]
    FENG Y, CHANG H, LIU Y, et al. Ultralow dark current infrared photodetector based on SnTe quantum dots beyond 2 μm at room temperature[J]. Nanotechnology, 2021, 32(19): 195602. DOI: 10.1088/1361-6528/abde64
    [18]
    Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid grapheme-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. DOI: 10.1038/nnano.2012.60
    [19]
    HUO N, Gupta S, Konstantatos G, et al. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm[J]. Adv. Mater., 2017, 29(17): 1606576. DOI: 10.1002/adma.201606576
    [20]
    CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. DOI: 10.1021/acsphotonics.9b01050
    [21]
    LIU Y, ZHAO C, LI J, et al. Highly sensitive CuInS2/ZnS core-shell quantum dot photodetectors[J]. ACS Appl. Electron. Mater., 2021, 3(3): 1236-1243. DOI: 10.1021/acsaelm.0c01064
    [22]
    TANG X, CHEN M, Kamath A, et al. Colloidal quantum-dots/ graphene/silicon dual-channel detection of visible light and short-wave infrared[J]. ACS Photonics, 2020, 7(5): 1117-1121. DOI: 10.1021/acsphotonics.0c00247
    [23]
    Chu A, Goubet N, Martinez B, et al. Near unity absorption in nanocrystal based short wave infrared photodetectors using guided mode resonators[J]. ACS Photonics, 2019, 6(10): 2553-2561. DOI: 10.1021/acsphotonics.9b01015
    [24]
    SUN Z, LIU Z, LI J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv. Mater, 2012, 24(43): 5878-5883. DOI: 10.1002/adma.201202220
    [25]
    Veeramalai C P, Kollu P, LIN G, et al. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics[J]. Nanotechnology, 2021, 23(31): 315204. DOI: 10.1088/1361-6528/abf87a
    [26]
    Yousefi Amin A, Killilea N A, Sytnyk M, et al. Fully printed infrared photodetectors from PbS nanocrystals with Perovskite ligands[J]. ACS Nano, 2019, 13(2): 2389-2397. http://www.onacademic.com/detail/journal_1000041600212399_fa02.html
    [27]
    Grotevent M J, Hail C U, Yakunin S, et al. Temperature-dependent charge carrier transfer in colloidal quantum dot/graphene infrared photo- detectors[J]. ACS Appl. Mater. Interfaces, 2021, 13(1): 848-856. DOI: 10.1021/acsami.0c15226
    [28]
    SUN Y, LIU Z, DING Y, et al. Flexible broadband photodetectors enabled by MXene/PbS quantum dots hybrid structure[J]. IEEE Electron Device Letters, 2021, 42(12): 1814-1817. DOI: 10.1109/LED.2021.3120729
    [29]
    XU K, ZHOU W, NING Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors[J]. Small, 2020, 16(47): 2003397. DOI: 10.1002/smll.202003397
    [30]
    Jana M K, Chithaiah P, Murali B, et al. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface[J]. J. Mater. Chem. C, 2013, 1(39): 6184. DOI: 10.1039/c3tc31344a
    [31]
    HE J, QIAO K, GAO L et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors[J]. ACS Photonics, 2014, 1(10): 936-943. DOI: 10.1021/ph500227u
    [32]
    Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7: 11954. DOI: 10.1038/ncomms11954
    [33]
    Adinolfi V, Sargent E H. Photovoltage field-effect transistors[J]. Nature, 2017, 45(7653): 252-252. http://datadryad.com/handle/10255/dryad.132152
    [34]
    TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277. DOI: 10.1038/s41566-019-0362-1
    [35]
    GENG X, WANG F, TIAN H, et al. Ultrafast photodetector by integrating Perovskite directly on silicon wafer[J]. ACS Nano, 2020, 14(3): 2860-2868. DOI: 10.1021/acsnano.9b06345
    [36]
    TAI C Y, Hsiao B Y. Characterization of zirconia powder synthesized via reverse microemulsion precipitation[J]. Chem. Eng. Comm. , 2005, 192(10-12): 1525-1540.
    [37]
    TAI C Y, Hsiao B Y, Chiu H Y. Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 237(1-3): 105-111. DOI: 10.1016/j.colsurfa.2004.02.014
    [38]
    HUANG K, YIN L, LIU S, et al. Preparation and formation mechanism of A12O3nanoparticles by reverse microemulsion[J]. Trans. Nonfcrrous Met. Soc. China, 2007, 17(3): 633-637. DOI: 10.1016/S1003-6326(07)60147-2
    [39]
    Khiew P S, Radiman S, HUANG N M, et al. Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion[J]. Journal of Crystal Growth, 2003, 254(1-2): 235-243. DOI: 10.1016/S0022-0248(03)01175-8
    [40]
    Haouemi K, Touati F, Gharbi N. Characterization of a new TiO2nanoflower prepared by the Sol-Gel process in a reverse microemulsion[J]. J. Inorg Organomet Polym, 2011, 21(4): 929-936. DOI: 10.1007/s10904-011-9587-2
    [41]
    CAO M, HE X, CHEN J, et al. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries[J]. Crystal Growth & Design, 2007, 7(1): 170-174. http://www.onacademic.com/detail/journal_1000035261945410_cdef.html
    [42]
    GE J, CHEN W, LIU L, et al. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions[J]. Chem. Eur. J., 2006, 12(25): 6552-6558. DOI: 10.1002/chem.200600454
    [43]
    Vestal C R, ZHANG Z J. Synthesis of CoCrFeO4Nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties[J]. Chem. Mater., 2002, 14(9): 3817-3822. DOI: 10.1021/cm020112k
    [44]
    XU J, YIN A, ZHAO J. Surfactant-free microemulsion composed of oleic acid, n‑propanol, and H2O[J]. J. Phys. Chem. B, 2013, 117(1): 450-456. DOI: 10.1021/jp310282a
    [45]
    Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. J. Am. Chem. Soc., 1992, 114(13): 5221-5230. DOI: 10.1021/ja00039a038
    [46]
    Kirmani A R, Luther J M, Abolhasani M, et al. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing[J]. ACS Energy Lett., 2020, 5(9): 3069-3100. DOI: 10.1021/acsenergylett.0c01453
    [47]
    YAN C, HUANG C, YANG J, et al. Synthesis and characterizations of quaternary Cu2FeSnS4nanocrystals[J]. Chem. Commun. , 2012, 48(20): 2603-2605. DOI: 10.1039/c2cc16972j
    [48]
    Kulpa-Greszta M, Tomaszewska A, Dziedzic A, et al. Rapid hot-injection as a tool for control of magnetic nanoparticle size and morphology[J]. RSC Adv., 2021, 11(34): 20708-20719. DOI: 10.1039/D1RA02977K
    [49]
    Ikeda S, Sogawa S, Tokai Y, et al. Selective production of CuSbS2, Cu3SbS3, and Cu3SbS4 nanoparticles using a hot injection protocol[J]. RSC Adv., 2014, 4(77): 40969-40972. DOI: 10.1039/C4RA07648F
    [50]
    Timonen J V I, Ikkala O, Ras R H A. et al. From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation[J]. Angew. Chem. Int. Ed., 2011, 50(9): 2080-2084. DOI: 10.1002/anie.201005600
    [51]
    TANG X, TANG X, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. DOI: 10.1021/acsphotonics.6b00620
    [52]
    Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Lett., 2016, 16(2): 1282-1286. DOI: 10.1021/acs.nanolett.5b04616
    [53]
    XU K, XIAO X, ZHOU W, et al. Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15414-15421. DOI: 10.1021/acsami.0c01744
    [54]
    Vafaie M, FAN J Z, Najarian A M, et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1, 550nm[J]. Matter, 2021, 4(3): 1042-1053. DOI: 10.1016/j.matt.2020.12.017
    [55]
    Sulaman M, YANG S, SONG T, et al. High performance solution-processed infrared photodiode based on ternary PbSxSe1-xcolloidal quantum dots[J]. RSC Adv., 2016, 6(90): 87730-87737. DOI: 10.1039/C6RA19946A
    [56]
    TANG Y, WU F, CHEN F, et al. A colloidal-quantum-dot infrared photodiode with high photoconductive gain[J]. Small, 2018, 14(48): 1803158. DOI: 10.1002/smll.201803158
    [57]
    Jagtap A, Martinez B, Goubet N, et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 2018, 5(11): 4569-4576. DOI: 10.1021/acsphotonics.8b01032
    [58]
    XU Q, MENG L, Sinha K, et al. Ultrafast colloidal quantum dot infrared photodiode[J]. ACS Photonics, 2020, 7(5): 1297-1303. DOI: 10.1021/acsphotonics.0c00363
    [59]
    Graddage N, OUYANG J Y, LU J, et al. Near-infrared-II photodetectors based on silver selenide quantum dots on mesoporous TiO2scaffolds[J]. ACS Appl. Nano Mater., 2020, 3(12): 12209-12217. DOI: 10.1021/acsanm.0c02686
    [60]
    ZHANG X, Cappel U B, JIA D, et al. Probing and controlling surface passivation of PbS quantum dot solid for improved performance of infrared absorbing solar cells[J]. Chem. Mater., 2019, 31(11): 4081-4091. DOI: 10.1021/acs.chemmater.9b00742
    [61]
    YANG X, YANG J, Khan J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nano-Micro Lett., 2020, 12(1): 37. DOI: 10.1007/s40820-020-0372-z
    [62]
    LIU Y, LI F, SHI G, et al. PbSe quantum dot solar cells based on directly synthesized semiconductive inks[J]. ACS Energy Lett., 2020, 5(12): 3797-3803. DOI: 10.1021/acsenergylett.0c02011
    [63]
    ZHANG Y, WU G, DING C, et al. Surface-modifed graphene oxide/lead sulfde hybrid film‑forming ink for high-efficiency bulk nano-heterojunction colloidal quantum dot solar cells[J]. Nano-Micro Lett., 2020, 12(9): 111. DOI: 10.1007/s40820-020-00448-8?utm_medium=cpc&utm_campaign=Nano-Micro_Letters_TrendMD_1
    [64]
    ZHANG Y, KAN Y, GAO K, et al. Hybrid quantum dot/organic heterojunction: a route to improve open-circuit voltage in PbS colloidal quantum dot solar cells[J]. ACS Energy Lett., 2020, 5(7): 2335-2342. DOI: 10.1021/acsenergylett.0c01136
  • Related Articles

    [1]JIN Yongwei, LIU Chunlong. Sensitivity Analysis of Thermal Design Parameters of High-Sensitivity Optical Detection Module[J]. Infrared Technology , 2025, 47(2): 141-147.
    [2]TAN Dan, ZHANG Zhijie, WANG Luxiang, WANG Dingerkai. Finite Element Simulation Analysis of Nondestructive Testing Parameters in Line Laser Scanning Thermal Imaging[J]. Infrared Technology , 2025, 47(1): 121-129.
    [3]LIU Qi, GAI Fangqin, YE Youshi, LIU Bo, SHI Lei. Micro-Infrared Thermopile Detector Space Applications Based on FPGA[J]. Infrared Technology , 2020, 42(7): 611-617.
    [4]MAO Yi-fan, ZHANG Duo-lin, WANG Lu. Simulation Analysis of Ballistic Missile Detection by STSS[J]. Infrared Technology , 2015, (3): 218-223.
    [5]ZHAO Li-Jun, OU Wen, YAN Jian-Hua, MING An-Jie, YUAN Feng, XIA Yan. Fabrication of a Thermopile Infrared Detector That Compatible with CMOS Process[J]. Infrared Technology , 2012, 34(2): 89-94. DOI: 10.3969/j.issn.1001-8891.2012.02.006
    [6]ZHOU Lian-jun, ZOU Peng-cheng, LI Jin-hui, LI Yu, LI Xin-rong. The Analysis of Stress Using FEA for the Pixel Structure of Uncooled Microbolometer Arrays[J]. Infrared Technology , 2010, 32(2): 63-67. DOI: 10.3969/j.issn.1001-8891.2010.02.001
    [7]CAI Shi-ping, SHEN Guo-tu, CAI Ji-guang, DONG Zhan-hai, GAO Jing. Generation of the Finite Element Model and Its Application on Thermal Analysis[J]. Infrared Technology , 2009, 31(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2009.05.009
    [8]ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Finite Element Simulation and Analysis of the Infrared NDT for Inner Defects in Casting Product[J]. Infrared Technology , 2008, 30(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2008.07.016
    [9]LANG Jia-hong, QIN Fu-wen, GU Biao. Study on Thin Film Growth Temperature by ECR-PEMOCVD Based on the Double Thermocouples[J]. Infrared Technology , 2007, 29(2): 79-82. DOI: 10.3969/j.issn.1001-8891.2007.02.005
    [10]Micromachined Uncooled Infrared Thermopile Detector[J]. Infrared Technology , 2005, 27(1): 34-38. DOI: 10.3969/j.issn.1001-8891.2005.01.008
  • Cited by

    Periodical cited type(1)

    1. 施飞宇,张京会,蔡亦华,蒋涛,李林格,方平,沐超,黄童,范承玉. 无线激光功率计数据采集传输模块设计. 量子电子学报. 2024(05): 752-760 .

    Other cited types(0)

Catalog

    Article views (424) PDF downloads (138) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return