HAN Qin, GAO Kaicong, REN Siwei, WU Jun, JIANG Ying, ZHAO Ruiguang, SHEN Jun. Comparative Study on Readout Circuit for Graphene and Typical Photoconductors Photodetectors[J]. Infrared Technology , 2022, 44(2): 123-128.
Citation: HAN Qin, GAO Kaicong, REN Siwei, WU Jun, JIANG Ying, ZHAO Ruiguang, SHEN Jun. Comparative Study on Readout Circuit for Graphene and Typical Photoconductors Photodetectors[J]. Infrared Technology , 2022, 44(2): 123-128.

Comparative Study on Readout Circuit for Graphene and Typical Photoconductors Photodetectors

More Information
  • Received Date: March 15, 2021
  • Revised Date: April 26, 2021
  • Graphene-based photodetectors have the advantages of good compatibility and wide-band response, and their readout circuits are similar to traditional detectors such as bolometers. However, graphene photodetectors are generally photon types whose responsivity, power consumption, and integration time are significantly different. Here, the readout circuits of pure graphene, graphene-lead sulfide heterostructure, lead sulfide, and typical bolometer combined with the measured device parameters are studied. Simulation results show that because of its high responsivity, when the same output voltage is achieved, the integration time of the graphene-lead sulfide heterostructure detector is the lowest, which is more conducive to high-frame-rate applications. However, compared with the bolometer, the graphene detector has a higher power consumption, and the analysis shows that a reasonable device structure design can effectively reduce the power consumption. This study can provide a reference in the selection of the readout circuit and parameter design of a new type of two-dimensional material photodetector.
  • [1]
    任丽娜, 曲延滨. 毫米波与红外技术在军事领域中的应用[J]. 红外技术, 2004, 26(3): 66-70, 74. DOI: 10.3969/j.issn.1001-8891.2004.03.015

    REN L N, QU Y B. The application of millimeter wave technology and infrared technology in the martial field[J]. Infrared Technology, 2004, 26(3): 66-70, 74. DOI: 10.3969/j.issn.1001-8891.2004.03.015
    [2]
    GUO N, HU W D, JIANG T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065-16072. DOI: 10.1039/C6NR04607J
    [3]
    YANG Q, WU Q M, LUO W, et al. InGaAs/graphene infrared photodetectors with enhanced responsivity[J]. Materials Research Express, 2019, 6(11): 116208. DOI: 10.1088/2053-1591/ab4925
    [4]
    FANG H, HU W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12): 1700323. DOI: 10.1002/advs.201700323
    [5]
    Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718. DOI: 10.1039/C5CS00106D
    [6]
    LI X M, ZHU H W, WANG K L, et al. Graphene-on-silicon schottky junction solar cells[J]. Advanced Materials, 2010, 22(25): 2743-2748. DOI: 10.1002/adma.200904383
    [7]
    WANG F, WANG Z X, YIN L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection[J]. Chemical Society Reviews, 2018, 47(16): 6296-6341. DOI: 10.1039/C8CS00255J
    [8]
    Lee I, KANG W T, Kim J E, et al. Photoinduced tuning of schottky barrier height in Graphene/MoS2 heterojunction for ultrahigh performance short channel phototransistor[J]. ACS Nano, 2020, 14(6): 7574-7580. DOI: 10.1021/acsnano.0c03425
    [9]
    Gerasimos K, Michela Badioli, Louis Gaudreau, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. DOI: 10.1038/nnano.2012.60
    [10]
    Avouris P. Graphene: electronic and photonic properties and devices[J]. Nano Letters, 2010, 10(11): 4285-4294. DOI: 10.1021/nl102824h
    [11]
    Ryzhii V, Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Physical Review B, 2009, 79(24): 245311. DOI: 10.1103/PhysRevB.79.245311
    [12]
    周云. 无TEC非制冷红外焦平面读出电路的研究[D]. 成都: 电子科技大学, 2013.

    ZHOU Y. Research on Tec_less Uncooled Infrared Focal Plane Readout Integrate Circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2013.
    [13]
    郑昕. PbS薄膜的制备及红外光敏性能的研究[D]. 成都: 电子科技大学, 2009.

    ZHEN X. Preparation of PbS thin films and study on infrared photosensitivity[D]. Chengdu: University of Electronic Science and Technology of China, 2009.
    [14]
    XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83.
  • Related Articles

    [1]MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
    [2]LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
    [3]YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.
    [4]LEI Zengqiang, XU Huiyong, CHENG Gang, SHEN Liangji, CHEN Zhixue. Design of Readout Circuit of Incremental Focusing Encoder Based on CPLD[J]. Infrared Technology , 2020, 42(11): 1037-1041.
    [5]LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419.
    [6]ZHANG Yuping, TANG Libin. Research Progress in Photodetectors Based on Topological Insulators[J]. Infrared Technology , 2020, 42(1): 1-9.
    [7]GAO Run, NIU Chunhui, LI Xiaoying, LYU Yong. Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser[J]. Infrared Technology , 2016, 38(8): 636-642.
    [8]KANG Bing-xin, LI Yu, BAI Pi-ji, LIU Hui-ping, WANG Bo. Design of A Novel Current Mirroring Integration Readout Integrated Circuit for Quantum Well Infrared Photodetectors[J]. Infrared Technology , 2012, 34(2): 95-98. DOI: 10.3969/j.issn.1001-8891.2012.02.007
    [9]WANG Yong-pan, GUO Fang-min. Wide Dynamic Range Readout Circuit Design on High Sensitivity Quantum Dot-in-Well Photodetector[J]. Infrared Technology , 2011, 33(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2011.06.006
    [10]ZHAN Guo-zhong, GUO Fang-min, HUANG Jing, ZHU Rong-jing. Research on Control Circuit with Tunable Parameters for Photodetector Readout Circuit[J]. Infrared Technology , 2008, 30(8): 485-488. DOI: 10.3969/j.issn.1001-8891.2008.08.014
  • Cited by

    Periodical cited type(2)

    1. 仝淅哲,申钧. 光导型石墨烯探测器暗电流抑制电路研究. 红外. 2025(02): 1-12 .
    2. 李世龙,焦岗成. 旋涂法制备石墨烯光阴极与测试分析. 红外技术. 2024(12): 1459-1463 . 本站查看

    Other cited types(1)

Catalog

    Article views (129) PDF downloads (58) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return