WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology , 2022, 44(5): 437-452.
Citation: WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology , 2022, 44(5): 437-452.

Research Progress of Black Silicon Photoelectric Detection Materials and Devices

More Information
  • Received Date: April 14, 2022
  • Revised Date: May 08, 2022
  • As a new photoelectric material, black silicon has been widely studied in photovoltaic solar cells, photodetectors, CMOS image sensors and other fields. Among them, the photoelectric detection technology of black silicon has attracted much attention, and important research progress has been made in recent years. In this review, the structure of black silicon materials has been firstly introduced, then the properties of black silicon materials prepared by femtosecond laser etching, wet etching and reactive ion etching are briefly discussed. Secondly, the structure and performance of different black silicon photodetectors based on the above preparation methods are summarized, then the application of black silicon devices in different fields is discussed. Finally, the photoelectric detection technology of black silicon is analyzed and prospected, and the future development direction of black silicon materials and devices is discussed.
  • [1]
    Her T, Finlay R J, WU C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675. DOI: 10.1063/1.122241
    [2]
    马世俊. 黑硅光电探测器关键技术研究[D]. 成都: 电子科技大学, 2018.

    MA Shijun. Study on the Key Technology of the Black Silicon Optoelectronic Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [3]
    Chou S, Krauss P, Renstrom P, et al. Imprint lithography with 25- nanometer resolution[J]. Science, 1996, 272(5258): 85-87. DOI: 10.1126/science.272.5258.85
    [4]
    CHOU S, Keimel C, GU J, et al. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. DOI: 10.1038/nature00792
    [5]
    Carey J, Crouch C, SHEN M, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 2005, 30(14): 1773-1775. DOI: 10.1364/OL.30.001773
    [6]
    HUANG Z, Carey J, LIU M, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89: 033506. DOI: 10.1063/1.2227629
    [7]
    Pralle M U, Carey J E, Homayoon H, et al. Black silicon enhanced photodetectors: a path to IR CMOS[C]//Proc. of SPIE, 2010, 7660: 76600N.
    [8]
    SU Y, JIANG Y, WU Z, et al. Spectral response of metal -semiconductor -metal photodetector based on black silicon[J]. Energy Procedia, 2011, 12: 615-619. DOI: 10.1016/j.egypro.2011.10.083
    [9]
    Said A, Recht D, Sullivan J, et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes[J]. Applied Physics Letters, 2011, 99(7): 1850-236.
    [10]
    刘长江. 基于飞秒激光非平衡掺杂技术黑硅材料的制备与光电器件研究[D]. 长春: 吉林大学, 2012.

    LIU Changjiang. The Fabrication of Black Silicon and its Application in Optoelectronic Devices Based on Femtosecond Laser Non-equilibrium Doping Technique[D]. Changchun: Jilin University, 2012.
    [11]
    HU S, HAN P, WANG S, et al. Improved photoresponse characteristics in Se -doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semiconductorence & Technology, 2012, 27(10): 102002.
    [12]
    SU Y, LI S, WU Z, et al. High responsivity MSM black silicon photodetector[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 619-624. DOI: 10.1016/j.mssp.2012.11.008
    [13]
    WANG X. Fabrication of tellurium doped silicon detector by fmtosecond laser and excimer laser[J]. Chinese Journal of Lasers, 2013, 40(3): 0302001. DOI: 10.3788/CJL201340.0302001
    [14]
    余峰. 微结构硅的制备及其PIN单元器件试制[D]. 成都: 电子科技大学, 2014.

    YU Feng. Fabrication of Microstructured Silicon and its Application in PIN Photodetector[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [15]
    Steglich M, Oehme M, Käsebier T, et al. Ge-on-Si photodiode with black silicon boosted responsivity[J]. Appl. Phys. Lett. , 2015, 107: 051103. DOI: 10.1063/1.4927836
    [16]
    赵丽. 黑硅光电探测器的制备及性能研究[D]. 天津: 南开大学, 2015.

    ZHAO Li. A Research on Fabrication and Properties of Black Silicon Photodetector[D]. Tianjin: Nankai University, 2015.
    [17]
    ZHONG H, GUO A, GUO G, et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching[J]. Nanoscale Research Letters, 2016, 11: 322. DOI: 10.1186/s11671-016-1528-0
    [18]
    Heinonen J, Juntunen M, Laine H S, et al. Black silicon n-type photodiodes with high response over wide spectral range[C]//Proc. of SPIE, 2017, 10231: 102310X.
    [19]
    MENG W, ZHONG H, HOU W, et al. Comparison of different etching methods on the morphology and semiconductor characters of black silicon[C]//IOP Conf. Series: Materials Science and Engineering, 2017, 250: 012015.
    [20]
    ZHAO J, LI C, LI X, et al. NIR photodetector based on nanosecond laser-modified silicon[J]. IEEE Transactions On Electron Devices, 2018, 65(11): 4905-4909. DOI: 10.1109/TED.2018.2869912
    [21]
    HU F, DAI X, ZHOU Z, et al. Black silicon Schottky photodetector in subbandgap near-infrared regime[J]. Optics Express, 2019, 27(3): 3161-3168. DOI: 10.1364/OE.27.003161
    [22]
    钟豪. 晶体硅表面的刻蚀与元素掺杂及其物理效应[D]. 成都: 电子科技大学, 2019.

    ZHONG Hao. Surface Etching and Doping on Monocrystalline Silicon and The Resulted Physical Effects[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
    [23]
    HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 9(7): 1901808.
    [24]
    王稞. 微结构硅基材料的超饱和掺杂及其光电特性的研究[D]. 长春: 中国科学院大学长春光学精密机械与物理研究所, 2020.

    WANG Ke. Study on Hyperdoping and Photoelectric Properties of Microstructured Silicon-Based Material[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.
    [25]
    JIA Z, WU Q, JIN X, et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 2020, 28(4): 5239-5247. DOI: 10.1364/OE.385887
    [26]
    YANG Y, ZHAO J, LI C, et al. Sub-bandgap absorption and photo-response of molybdenum heavily doped black silicon fabricated by a femtosecond laser[J]. Optics Letters, 2021, 46(13): 3300-3303. DOI: 10.1364/OL.425803
    [27]
    郑泽宇, 罗谦, 徐开凯, 等. 基于黑硅微结构的全硅PIN光电探测器[J]. 光电工程, 2021, 48(5): 200364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202105005.htm

    ZHENG Zeyu, LUO Qian, XU Kaikai, et al. All-silicon PIN photodetector based on black silicon microstructure[J]. Opto-Electronic Engineering, 2021, 48(5): 200364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202105005.htm
    [28]
    Martin S, Matthias Z, Astrid B, et al. A normal-incidence PtSi photoemissive detector with black silicon light-trapping[J]. Journal of Applied Physics, 2013, 114: 183102. DOI: 10.1063/1.4829897
    [29]
    Younkin R, Carey J, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626-2629. DOI: 10.1063/1.1545159
    [30]
    盛浩. PIN黑硅原理性探测器试制[D]. 成都: 电子科技大学, 2016.

    SHENG Hao. An Investigation of Si-Pin Photodetector Based on Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
    [31]
    Shahnawaz U, Md R H, Mohd Z P. Aluminium-assisted chemical etching for fabrication of black silicon[J]. Materials Chemistry and Physics, 2021, 265: 124469. DOI: 10.1016/j.matchemphys.2021.124469
    [32]
    王健波. 黑硅材料的制备及器件研究[D]. 成都: 电子科技大学, 2015.

    WANG Jianbo. Study of Preparation and Related Device of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
    [33]
    JIN X, WU Q, HUANG S, et al. High-performance black silicon photodetectors operating over a wide temperature range[J]. Optical Materials, 2021, 113: 110874. DOI: 10.1016/j.optmat.2021.110874
    [34]
    YU X, LV Z, LI C, et al. The optical and electrical properties of Co-doped black silicon textured by a femtosecond laser and Its Application to Infrared Light Sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5227-5231. DOI: 10.1109/JSEN.2016.2564500
    [35]
    ZHAO J, LV Z, LI C, et al. Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J]. IEEE Sensors Journal, 2017, 17(4): 1000-1004.
    [36]
    WANG X, HUANG Y, LIU D, et al. High response in a tellurium -supersaturated silicon photodiode[J]. Chinese Physics Letters, 2013, 30(3): 36101-036101. DOI: 10.1088/0256-307X/30/3/036101
    [37]
    宣曜宇. 飞秒激光诱导的Si能级调控及近红外增强探测器研究[D]. 成都: 电子科技大学, 2017.

    XUAN Yaoyu. Research of the Energy Level in Si Induced by Femtosecond Laser and the Performance of Enhanced Near Infrared Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [38]
    郭国辉. 黑硅PIN四象限探测器研究[D]. 成都: 电子科技大学, 2017.

    GUO Guohui. An Investigation of Si-PIN Four Quadrant Photodetector Based On Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [39]
    王延超. 微结构硅基近红外材料及其光电特性研究[D]. 长春: 中国科学院大学长春光学精密机械与物理研究所, 2017.

    WANG Yanchao. Microstructure Silicon-based Near-infrared Materials and its Optics, Photoelectric Characteristics Research[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.
    [40]
    于心月. 飞秒激光过渡金属的过饱和掺杂黑硅的研究[D]. 长春: 吉林大学, 2018.

    YU Xinyue. Study on Supersaturated Doped Black Silicon with Transition Metal by Femtosecond Laser[D]. Changchun: Jilin University, 2018.
    [41]
    李春昊. 脉冲激光黑硅材料的制备及红外光电器件研究[D]. 长春: 吉林大学, 2018.

    LI Chunhao. Research of Black Si Material Fabricated by Pulsed Laser Irradiation and its Applications in Infrared Optoelectronic Detections[D]. Changchun: Jilin University, 2018.
    [42]
    祝威. 近红外增强型硅双四象限光电探测器研究[D]. 成都: 电子科技大学, 2020.

    ZHU Wei. Research on Double Quadrants Silicon Photoelectric Detector with Near Infrared Enhancement[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [43]
    MI G, LV J, QUE L, et al. A Dual Four-Quadrant Photodetector Based on Near-Infrared Enhanced Nanometer Black Silicon[J]. Nanoscale Research Letters, 2021, 16: 38. DOI: 10.1186/s11671-021-03499-x
    [44]
    MA S, LIU X, SUN H, et al. Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere[J]. Journal of the Optical Society of America B, 2020, 37(3): 730-735. DOI: 10.1364/JOSAB.374044
    [45]
    苏元捷, 蒋亚东, 吴志明, 等. 势垒层对黑硅光电探测器性能影响的研究[J]. 光电子·激光, 2011, 22(10): 1339-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201110001.htm

    SU Yuanjie, JIANG Yadong, WU Zhiming, et al. Influence of barrier layer on photoelectric properties of black silicon photodetectors[J]. Journal of Optoelectronics·Laser, 2011, 22(10): 1339-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201110001.htm
    [46]
    张婷. 黑硅的湿法制备工艺及近红外探测应用研究[D]. 成都: 电子科技大学, 2014.

    ZHANG Ting. Preparation and Near-Infrared Detection Research of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [47]
    廖家科. 微纳结构硅的制备及齐建华应用研究[D]. 成都: 电子科技大学, 2015.

    LIAO Jiake. Fabrication of Micro/Nano Structured Silicon and its Application in Photoelectrical Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
    [48]
    Hamamatsu Photonics. Silicon photodiode S1336-44BK for UV to near IR precision photometry[DB/OL]. http://www.hamamatsu.com.cn/product/17581.html.
    [49]
    Moloney A M, Wall L, Mathewson A, et al. Novel black silicon PIN photodiodes[C]//Proc. of SPIE, 2006, 6119: 61190B.
    [50]
    宋轶佶. 拓宽黑硅吸收光谱范围技术研究[D]. 成都: 电子科技大学, 2020.

    SONG Yiji. Study on the Technology of Broadening the Absorption Spectrum Range of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [51]
    王文革, 李华高, 龙飞, 等. 黑硅微结构光敏二极管[J]. 半导体光电, 2015, 36(6): 892-894. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201506008.htm

    WANG Wenge, LI Huagao, LONG Fei, et al. Black silicon microstructure photodiodes[J]. Semiconductor Optoelectronics, 2015, 36(6): 892-894. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201506008.htm
    [52]
    黄建, 雷仁方, 江海波, 等. 基于湿法腐蚀工艺的高性能黑硅光电探测器[J]. 半导体光电, 2021, 42(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104003.htm

    HUANG Jian, LEI Renfang, JIANG Haibo, et al. High performance black silicon photodetector based on wet etching process[J]. Semiconductor Optoelectronics, 2021, 42(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104003.htm
    [53]
    王锦, 陶科, 李国峰, 等. 倒金字塔结构的黑硅PIN光电探测器的研究[J]. 光电子·激光, 2018, 29(12): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201812003.htm

    WANG Jin, TAO Ke, LI Guofeng, et al. Study of black silicon PIN photo-detector with inverted pyramidal structure[J]. Journal of Optoelectronics·Laser, 2018, 29(12): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201812003.htm
    [54]
    Müllerová J, Scholtza L, Ďurišováb J, et al. Angle- and polarization resolved antireflection properties of black silicon prepared by electrochemical etching supported by external electric field[J]. Applied Surface Science, 2018, 461: 182-189. DOI: 10.1016/j.apsusc.2018.05.179
    [55]
    XU G, CHENG S, CAI B. Black silicon as absorber for photo- thermal -electric devices[J]. Materials Express, 2018, 8(3): 294-298. DOI: 10.1166/mex.2018.1426
    [56]
    HUANG Y, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774. DOI: 10.1038/nnano.2007.389
    [57]
    Heinonen J, Haarahiltunen A, Serue M D, et al. High-sensitivity NIR photodiodes using black silicon[C]//Proc. of SPIE, 2020, 11276: 112760G.
    [58]
    Kim K, Yoon S, Seo M, et al. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes[J]. Nature Electronics, 2019, 2(12): 572-579. DOI: 10.1038/s41928-019-0317-z
    [59]
    Pralle M, Carey J, Homayoon H, et al. IR CMOS: infrared enhanced silicon imaging[C]//Proc. of SPIE, 2013, 8704: 870407.
    [60]
    Petersen S D, Davidsen R S, Alcalá L R, et al. Improvement of infrared detectors for tissue oximetry using black silicon nanostructures[J]. Procedia Engineering, 2014, 87: 652-655. DOI: 10.1016/j.proeng.2014.11.572
    [61]
    Pralle M, Carey J, Vineis C, et al. IR CMOS: the digital nightvision solution to sub-1 mLux imaging[C]//Proc. of SPIE, 2015, 9451: 945108.
    [62]
    Juntunen M A, Heinonen J, Vähänissi V, et al. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction[J]. Nature Photonics, 2016, 10(12): 777-781. DOI: 10.1038/nphoton.2016.226
    [63]
    Garin M, Heinonen J, Werner L, et al. Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%[J]. Physical Review Letters, 2020, 125: 117702. DOI: 10.1103/PhysRevLett.125.117702
    [64]
    JIN X, SUN Y, WU Q, et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon[J]. ACS Applied Materials and Interfaces, 2019, 11: 42385-42391. DOI: 10.1021/acsami.9b16667
    [65]
    申朝阳. 微纳米结构增强硅基太赫兹功能器件研究[D]. 成都: 电子科技大学, 2020.

    SHEN Chaoyang. Research on Micro-Nano Structure Enhanced Silicon- based Terahertz Functional Devices[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [66]
    Pralle M, Vineis C, Palsule C, et al. Ultra low light CMOS image sensors[C]//Proc. of SPIE, 2021, 11741: 117410E.
  • Related Articles

    [1]LIN Li, JIANG Jing, ZHU Junzhen, FENG Fuzhou. Detection and Recognition of Metal Fatigue Cracks by Bi-LSTM Based on Eddy Current Pulsed Thermography[J]. Infrared Technology , 2023, 45(9): 982-989.
    [2]DUAN Lixiang, LIU Ziwang, ZHAO Zhenxin, KONG Xin, YUAN Zhuang. Infrared Image ROI Extraction Based on Region Contrast and Random Forest[J]. Infrared Technology , 2020, 42(10): 988-993.
    [3]WU Yiyuan, LEI Zhenggang, ZHANG Peizhong, YU Chunchao. Construction and Verification of Vibration Test Platform Based on Virtual Instrument Architecture[J]. Infrared Technology , 2019, 41(5): 435-442.
    [4]SUN Jiwei, FENG Fuzhou, ZHANG Lixia, MIN Qingxu. Thermal Analysis of Metal Fatigue Cracks in Eddy Current Pulsed Thermography[J]. Infrared Technology , 2019, 41(4): 383-387.
    [5]MIN Qingxu, FENG Fuzhou, XU Chao, SUN Jiwei. Detection of Fatigue Cracks in Metal Plates using Lock-in Vibrothermography[J]. Infrared Technology , 2018, 40(1): 91-94.
    [6]ZHANG Chao, ZHAO Qiang, TANG Han, ZHANG Weifeng, TAO Liang, ZHAO Jinsong. Design and Analysis of SiC Mirror for Vibration and Scanning[J]. Infrared Technology , 2017, 39(4): 309-316.
    [7]ZHANG Hongwei, XU Yulei, TAN Songnian, LI Quanchao. Design of Vibration Damping System for Infrared Camera with Long Focal Length[J]. Infrared Technology , 2016, 38(8): 643-647.
    [8]SHEN Zhen-yi, SUN Shao-yuan, HOU Jun-jie, ZHAO Hai-tao. The Vehicle Infrared Image Colorization Algorithm Based on Random Forest and Superpixel Segmentation[J]. Infrared Technology , 2015, (12): 1041-1046.
    [9]XIA Li-kun, ZI Zheng-hua, YAN Ming, TAO Liang, MO Qi-yuan, WANG Zheng-qiang, LI Chang-cheng. Discussion of Domestic Testing Methods for Parallelism of Optical Axis and Datum Clamp Plane for IR Imager[J]. Infrared Technology , 2015, (6): 523-527.
    [10]YUAN Ming-song, FENG Jian-wei, HUANG Yun, GU Dao-qin, PAN Shun-chen. Random Vibration Response Analysis of Loitering Attack Missile Imaging Infrared Seeker[J]. Infrared Technology , 2015, (4): 342-346.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return