WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924.
Citation: WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924.

Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain

More Information
  • Received Date: August 01, 2022
  • Revised Date: September 12, 2022
  • Image fusion technology aims to solve the problem of insufficient and incomplete information provided by a single-modality image. This paper proposes a novel method based on guided filter (GF) and sparse representation (SR) in the non-subsampled shearlet transform (NSST) domain, to fuse infrared and visible images. Specifically, ① the infrared and visible images are respectively decomposed using NSST to obtain the corresponding high-frequency and low-frequency sub-band images; ② The GF-weighted fusion strategy is exploited to fuse the high-frequency sub-band images; ③ Rolling guidance filter (RGF) is used to further decompose the low-frequency sub-band images into base and detail layers, whereby the base layers are fused via SR, and the detail layers are fused using local maximum strategy which is based on consistency verification; ④ An inverse NSST is performed on the fused high-frequency and low-frequency sub-band images to obtain the final fusion result. Compared to those of other methods, experimental results on public datasets show that the fusion result obtained by the proposed method has richer texture detail and better subjective visual effects. In addition, the proposed method achieves overall better performance in terms of objective metrics that are commonly used for evaluating fusion results.
  • [1]
    MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    LIU Y P, JIN J, WANG Q, et al. Region level based multi-focus image fusion using quaternion wavelet and normalized cut[J]. Signal Processing, 2014, 97: 9-30. DOI: 10.1016/j.sigpro.2013.10.010
    [3]
    Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. DOI: 10.1016/0167-8655(89)90003-2
    [4]
    Choi M, Kim R Y, Nam M R, et al. Fusion of multispectral and panchromatic satellite images using the curvelet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 136-140. DOI: 10.1109/LGRS.2005.845313
    [5]
    Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46. DOI: 10.1016/j.acha.2007.09.003
    [6]
    康家银, 陆武, 张文娟. 融合NSST和稀疏表示的PET和MRI图像融合[J]. 小型微型计算机系统, 2019, 40(12): 2506-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201912006.htm

    KANG J Y, LU W, ZHANG W J. Fusion of PET and MRI images using non-subsampled shearlet transform combined with sparse representation[J]. Journal of Chinese Computer Systems. 2019, 40(12): 2506-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201912006.htm
    [7]
    LIU Z W, FENG Y, CHEN H, et al. A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain[J]. Optics and Lasers in Engineering, 2017, 97: 71-77. DOI: 10.1016/j.optlaseng.2017.05.007
    [8]
    董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009

    DONG A Y, DU Q Z, SU B, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
    [9]
    叶坤涛, 李文, 舒蕾蕾, 等. 结合改进显著性检测与NSST的红外与可见光图像融合方法[J]. 红外技术, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805

    YE K T, LI W, SHU L L, et al. Infrared and visible image fusion method based on improved saliency detection and non-subsampled shearlet transform[J]. Infrared Technology, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805
    [10]
    王晓娜, 潘晴, 田妮莉. 基于NSST-DWT-ICSAPCNN的多模态图像融合算法[J]. 红外技术, 2022, 44(5): 497-503. http://hwjs.nvir.cn/article/id/0644931d-58ad-4bbd-a752-5f4bbd2061e1

    WANG X N, PAN Q, TIAN N L. Multi-modality image fusion algorithm based on NSST-DWT-ICSAPCNN[J]. Infrared Technology, 2022, 44(5): 497-503. http://hwjs.nvir.cn/article/id/0644931d-58ad-4bbd-a752-5f4bbd2061e1
    [11]
    常莉红. 基于剪切波变换和稀疏表示理论的图像融合方法[J]. 中山大学学报: 自然科学版, 2017, 56(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201704003.htm

    CHANG L H. Fusion method based on shearlet transform and sparse representation[J]. Acta Scientiarum Naturalium Universitatis Sunyatsen, 2017, 56(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201704003.htm
    [12]
    王相海, 邢俊宇, 王鑫莹, 等. 基于剪切波和低秩稀疏表示的噪声图像融合算法研究[J]. 辽宁师范大学学报: 自然科学版, 2022, 45(2): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-LNSZ202202008.htm

    WANG X H, XING J Y, WANG X Y, et al. Noisy image fusion algorithm based on shearlet and low-rank sparse representation[J]. Journal of Liaoning Normal University (Natural Science Edition), 2022, 45(2): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-LNSZ202202008.htm
    [13]
    吴月. 基于非下采样剪切波变换和稀疏表示的图像融合算法研究[D]. 北京: 北京交通大学, 2018.

    WU Y. Image Fusion Algorithm Based on Sparse Representation and Non-Subsampled Shearlet Transform[D]. Beijing: Beijing Jiaotong University, 2018.
    [14]
    HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. DOI: 10.1109/TPAMI.2012.213
    [15]
    ZHANG Q, SHEN X, XU L, et al. Rolling guidance filter[C]//13th European Conference on Computer Vision, 2014: 815-830.
    [16]
    MA J L, ZHOU Z Q, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
    [17]
    Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. DOI: 10.1109/TSP.2006.881199
    [18]
    YANG B, LI S T. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884-892. DOI: 10.1109/TIM.2009.2026612
    [19]
    LI H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245.
    [20]
    MA J Y, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109.
    [21]
    LIU Y, WANG Z F. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015, 9(5): 347-357.
    [22]
    LI S T, KANG X D, HU J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
    [23]
    LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164.
    [24]
    LIU Y, CHEN X, Ward R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886.
    [25]
    SHEN Y, NA J, WU Z D, et al. Tetrolet transform images fusion algorithm based on fuzzy operator[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1132.
    [26]
    敬忠良, 肖刚, 李振华. 图像融合—理论与应用[M]. 北京: 高等教育出版社, 2007.

    JING Z L, XIAO G, LI Z H. Image Fusion: Theory and Applications[M]. Beijing: High Education Press, 2007. (in Chinese)
    [27]
    ZHENG Y, Essock E A, Hansen B C, et al. A new metric based on extended spatial frequency and its application to DWT based fusion algorithms[J]. Information Fusion, 2007, 8(2): 177-192.
    [28]
    Xydeas C S, Petrovic V S. Objective pixel-level image fusion performance measure[C]//AeroSense, 2000: 89-98.
    [29]
    WANG Q, SHEN Y, JIN J. Performance Evaluation of Image Fusion Techniques[M]. Amsterdam: Elsevier, 2008: 469-492.
    [30]
    Piella G, Heijmans H. A new quality metric for image fusion[C]// International Conference on Image Processing, IEEE, 2003(2): Ⅲ-173-6.
  • Related Articles

    [1]DONG Lanxiao, NAN Xueli, LIU Haoyang, DUAN Qikai, DONG Jinfeng. Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design[J]. Infrared Technology , 2022, 44(9): 986-990.
    [2]ZHOU Qiangguo, HUANG Zhiming. Review of Research and Application of Terahertz Imaging Technology[J]. Infrared Technology , 2022, 44(4): 328-342.
    [3]PAN Wu, YAN Yanjun, SHEN Dajun. Performance Analysis of Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency[J]. Infrared Technology , 2018, 40(7): 707-711.
    [4]WU Gang, TANG Libin, HAO Qun, ZHANG Yuping, LI Rujie, PAN Feng, YANG Yanbo, LAU Shuping, HAN Fuzhong. Research Progress in the Uncooled Terahertz Imaging Detection Technology[J]. Infrared Technology , 2018, 40(6): 513-527.
    [5]HAO Yuan, YU Yue, WANG Qiang, GU Xiaohong. Experimental Analysis of Terahertz Detection of Polyethylene Thickness[J]. Infrared Technology , 2018, 40(2): 183-188.
    [6]LIU Lingyu, CHANG Tianying, YANG Chuanfa. Detection of the Debonding Defect between a Composite Material and Metal Based on Terahertz Time-Domain Spectroscopy[J]. Infrared Technology , 2018, 40(1): 79-84.
    [7]LIANG Juan, XU Guoyue, GUO Tengchao, TAN Shujuan, HUANG Jinguo. Study on Key Factor Influencing Compatible Property of Low-Emissivity Coating with Metamaterials[J]. Infrared Technology , 2018, 40(1): 14-19,46.
    [8]YANG Jingfan, QU Shaobo, PANG Yongqiang, XU Cuilian. Development of THz and Infrared Metamaterial Absorbers[J]. Infrared Technology , 2017, 39(4): 323-328.
    [9]WANG Liansheng, XIA Dongyan, DING Xueyong, WANG Yuan, HE Yanting. The Design Research of Dual Wideband Polarization-independent Metamaterials Absorber in the THz Band[J]. Infrared Technology , 2016, 38(7): 607-611,621.
    [10]LIU Yi, PENG Xiao-yu, WANG Zuo-bin, DONG Jia-meng, WEI Dong-shan, CUI Hong-liang, DU Chun-lei. Terahertz-wave Absorber Based on Metamaterial[J]. Infrared Technology , 2015, (9): 756-763.
  • Cited by

    Periodical cited type(3)

    1. 朱泽宇,肖满生,徐萌,王瑶瑶,颜谨. 基于改进YOLOv8n的轻量化PCB板表面缺陷检测算法. 软件导刊. 2025(04): 69-74 .
    2. 李扬,陈伟,杨清永,李现国,徐常余,徐晟. 基于大核分离和通道先验卷积注意的PCB缺陷检测方法. 燕山大学学报. 2024(06): 519-527+549 .
    3. 王崟,陆利坤,齐亚莉,曾庆涛. 基于优化YOLOv8-X的印刷电路板缺陷智能检测方法. 现代计算机. 2024(24): 29-35 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return