WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924.
Citation: WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924.

Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain

More Information
  • Received Date: August 01, 2022
  • Revised Date: September 12, 2022
  • Image fusion technology aims to solve the problem of insufficient and incomplete information provided by a single-modality image. This paper proposes a novel method based on guided filter (GF) and sparse representation (SR) in the non-subsampled shearlet transform (NSST) domain, to fuse infrared and visible images. Specifically, ① the infrared and visible images are respectively decomposed using NSST to obtain the corresponding high-frequency and low-frequency sub-band images; ② The GF-weighted fusion strategy is exploited to fuse the high-frequency sub-band images; ③ Rolling guidance filter (RGF) is used to further decompose the low-frequency sub-band images into base and detail layers, whereby the base layers are fused via SR, and the detail layers are fused using local maximum strategy which is based on consistency verification; ④ An inverse NSST is performed on the fused high-frequency and low-frequency sub-band images to obtain the final fusion result. Compared to those of other methods, experimental results on public datasets show that the fusion result obtained by the proposed method has richer texture detail and better subjective visual effects. In addition, the proposed method achieves overall better performance in terms of objective metrics that are commonly used for evaluating fusion results.
  • [1]
    MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    LIU Y P, JIN J, WANG Q, et al. Region level based multi-focus image fusion using quaternion wavelet and normalized cut[J]. Signal Processing, 2014, 97: 9-30. DOI: 10.1016/j.sigpro.2013.10.010
    [3]
    Toet A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. DOI: 10.1016/0167-8655(89)90003-2
    [4]
    Choi M, Kim R Y, Nam M R, et al. Fusion of multispectral and panchromatic satellite images using the curvelet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 136-140. DOI: 10.1109/LGRS.2005.845313
    [5]
    Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46. DOI: 10.1016/j.acha.2007.09.003
    [6]
    康家银, 陆武, 张文娟. 融合NSST和稀疏表示的PET和MRI图像融合[J]. 小型微型计算机系统, 2019, 40(12): 2506-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201912006.htm

    KANG J Y, LU W, ZHANG W J. Fusion of PET and MRI images using non-subsampled shearlet transform combined with sparse representation[J]. Journal of Chinese Computer Systems. 2019, 40(12): 2506-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201912006.htm
    [7]
    LIU Z W, FENG Y, CHEN H, et al. A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain[J]. Optics and Lasers in Engineering, 2017, 97: 71-77. DOI: 10.1016/j.optlaseng.2017.05.007
    [8]
    董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009

    DONG A Y, DU Q Z, SU B, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
    [9]
    叶坤涛, 李文, 舒蕾蕾, 等. 结合改进显著性检测与NSST的红外与可见光图像融合方法[J]. 红外技术, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805

    YE K T, LI W, SHU L L, et al. Infrared and visible image fusion method based on improved saliency detection and non-subsampled shearlet transform[J]. Infrared Technology, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805
    [10]
    王晓娜, 潘晴, 田妮莉. 基于NSST-DWT-ICSAPCNN的多模态图像融合算法[J]. 红外技术, 2022, 44(5): 497-503. http://hwjs.nvir.cn/article/id/0644931d-58ad-4bbd-a752-5f4bbd2061e1

    WANG X N, PAN Q, TIAN N L. Multi-modality image fusion algorithm based on NSST-DWT-ICSAPCNN[J]. Infrared Technology, 2022, 44(5): 497-503. http://hwjs.nvir.cn/article/id/0644931d-58ad-4bbd-a752-5f4bbd2061e1
    [11]
    常莉红. 基于剪切波变换和稀疏表示理论的图像融合方法[J]. 中山大学学报: 自然科学版, 2017, 56(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201704003.htm

    CHANG L H. Fusion method based on shearlet transform and sparse representation[J]. Acta Scientiarum Naturalium Universitatis Sunyatsen, 2017, 56(4): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201704003.htm
    [12]
    王相海, 邢俊宇, 王鑫莹, 等. 基于剪切波和低秩稀疏表示的噪声图像融合算法研究[J]. 辽宁师范大学学报: 自然科学版, 2022, 45(2): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-LNSZ202202008.htm

    WANG X H, XING J Y, WANG X Y, et al. Noisy image fusion algorithm based on shearlet and low-rank sparse representation[J]. Journal of Liaoning Normal University (Natural Science Edition), 2022, 45(2): 191-200. https://www.cnki.com.cn/Article/CJFDTOTAL-LNSZ202202008.htm
    [13]
    吴月. 基于非下采样剪切波变换和稀疏表示的图像融合算法研究[D]. 北京: 北京交通大学, 2018.

    WU Y. Image Fusion Algorithm Based on Sparse Representation and Non-Subsampled Shearlet Transform[D]. Beijing: Beijing Jiaotong University, 2018.
    [14]
    HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. DOI: 10.1109/TPAMI.2012.213
    [15]
    ZHANG Q, SHEN X, XU L, et al. Rolling guidance filter[C]//13th European Conference on Computer Vision, 2014: 815-830.
    [16]
    MA J L, ZHOU Z Q, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
    [17]
    Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. DOI: 10.1109/TSP.2006.881199
    [18]
    YANG B, LI S T. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884-892. DOI: 10.1109/TIM.2009.2026612
    [19]
    LI H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245.
    [20]
    MA J Y, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109.
    [21]
    LIU Y, WANG Z F. Simultaneous image fusion and denoising with adaptive sparse representation[J]. IET Image Processing, 2015, 9(5): 347-357.
    [22]
    LI S T, KANG X D, HU J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
    [23]
    LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164.
    [24]
    LIU Y, CHEN X, Ward R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886.
    [25]
    SHEN Y, NA J, WU Z D, et al. Tetrolet transform images fusion algorithm based on fuzzy operator[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1132.
    [26]
    敬忠良, 肖刚, 李振华. 图像融合—理论与应用[M]. 北京: 高等教育出版社, 2007.

    JING Z L, XIAO G, LI Z H. Image Fusion: Theory and Applications[M]. Beijing: High Education Press, 2007. (in Chinese)
    [27]
    ZHENG Y, Essock E A, Hansen B C, et al. A new metric based on extended spatial frequency and its application to DWT based fusion algorithms[J]. Information Fusion, 2007, 8(2): 177-192.
    [28]
    Xydeas C S, Petrovic V S. Objective pixel-level image fusion performance measure[C]//AeroSense, 2000: 89-98.
    [29]
    WANG Q, SHEN Y, JIN J. Performance Evaluation of Image Fusion Techniques[M]. Amsterdam: Elsevier, 2008: 469-492.
    [30]
    Piella G, Heijmans H. A new quality metric for image fusion[C]// International Conference on Image Processing, IEEE, 2003(2): Ⅲ-173-6.
  • Related Articles

    [1]LI Xianjing, HAO Zhenghui. Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features[J]. Infrared Technology , 2024, 46(3): 325-331.
    [2]ZHENG Kai, LUO Zhitao, ZHANG Hui. Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development[J]. Infrared Technology , 2023, 45(10): 1008-1019.
    [3]GONG Jiamin, WU Yijie, LIU Fang, ZHANG Yunsheng, LEI Shutao, ZHU Zehao. Image Fusion Algorithm Based on Improved Fuzzy C-means Clustering[J]. Infrared Technology , 2023, 45(8): 849-857.
    [4]JIN Meixiu, ZHU Shihu, WANG Tong, ZHUANG Feifei. Nondestructive Crack Testing via Infrared Thermal Imaging Using Halogen Lamp Excitation[J]. Infrared Technology , 2022, 44(4): 421-427.
    [5]ZHANG Qingyu, FAN Yugang, GAO Yang. Defect Detection of Eddy-Current Thermography Based on Single-Scale Retinex and Improved K-means Clustering[J]. Infrared Technology , 2020, 42(10): 1001-1006.
    [6]KONG Songtao, HUANG Zhen, YANG Jinru. Research Status and Development of Image Processing for Infrared Thermal Image Nondestructive Testing[J]. Infrared Technology , 2019, 41(12): 1133-1140.
    [7]ZHENG Kai, JIANG Haijun, CHEN Li. Infrared Thermography NDT and Its Development[J]. Infrared Technology , 2018, 40(5): 401-411.
    [8]Numerical Simulation of Lock-in Thermograpy for Infrared Nondestructive Testing[J]. Infrared Technology , 2013, (2): 119-122.
    [9]ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Finite Element Simulation and Analysis of the Infrared NDT for Inner Defects in Casting Product[J]. Infrared Technology , 2008, 30(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2008.07.016
    [10]XIE Xing-sheng, YAN Fang, LU Jia-jia, YE Yu-tang, DENG Jun-jie, WEI Jian-ying, SUN Guo-dong, FANG Liang. The Applications of Thermal Wave NDT in Turbine Blades Testing[J]. Infrared Technology , 2007, 29(9): 552-555. DOI: 10.3969/j.issn.1001-8891.2007.09.015
  • Cited by

    Periodical cited type(3)

    1. 王茜萌. 基于行为聚类的电子商务恶意支付用户检测. 信息与电脑(理论版). 2023(03): 25-27 .
    2. 杜玉红,张松奇. 基于红外图像的耐腐蚀船舶材料表面缺陷识别研究. 舰船科学技术. 2023(14): 152-155 .
    3. 苗勃. 基于红外图像增强算法的石油储罐内油品温度过高风险自动识别方法. 化工自动化及仪表. 2023(06): 900-904 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return