Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
ZHANG Jiangfeng, DIAO Yunfei, ZHANG Xiaoling, MENG Qingduan. Thermal Stress Structural Optimization of InSb Infrared Focal Plane Array Detector[J]. Infrared Technology , 2021, 43(12): 1202-1206.
Citation: ZHANG Jiangfeng, DIAO Yunfei, ZHANG Xiaoling, MENG Qingduan. Thermal Stress Structural Optimization of InSb Infrared Focal Plane Array Detector[J]. Infrared Technology , 2021, 43(12): 1202-1206.

Thermal Stress Structural Optimization of InSb Infrared Focal Plane Array Detector

  • Received Date: 2020-09-12
  • Rev Recd Date: 2021-11-29
  • Publish Date: 2021-12-20
  • In liquid nitrogen shock experiments, a thermal mismatch occurs owing to the difference in the linear expansion coefficients of the layered In antimonide infrared focal plane array detector, and the excessive thermal mismatch stress fractures the InSb chip. Based on the calculation theory of the thermal stress suitable for the elastic multilayer system, employing the design method of a balanced composite structure is considered to be effective in reducing the impact of the thermal mismatch on the InSb chip. Accordingly, we optimize the thermal strain on the upper surface of the balanced composite structure. In other words, the optimization involved making the thermal strain on the upper surface of the Readout circuit in the balanced composite structure as close as possible to the thermal strain on the lower surface of the InSb chip. Consequently, the reduced thermal mismatch reduces the thermal stress in the InSb chip. Considering the maturity of the device processing technology, the thickness of the readout circuit is set at 25 μm, which is the thinnest sheet of the readout circuit fabricated in our lab using the chemical mechanical polishing method. For the defined thickness (25 μm) of the readout circuit, the calculation results indicate that the thermal strain on the upper surface of the readout circuit is the closest to the thermal strain on the lower surface of the InSb chip. When these two structures are glued together by the underfill, the tensile stress accumulated in the InSb chip is the smallest. The significant reduction in the tensile stress in the InSb chip provides a reliable structural design scheme and an implementation approach to reduce the fragmentation probability of the InSb chip in the liquid nitrogen impact.
  • loading
  • [1]
    雷亚贵, 王戎瑞, 陈苗海. 国外非制冷红外焦平面阵列探测器进展[J]. 激光与红外, 2007(9): 801-805. doi:  10.3969/j.issn.1001-5078.2007.09.001

    LEI Yagui, WANG Rongrui, CHEN Miaohai. Development of foreign uncooled IRFPA detectors[J]. Laser & Infrared, 2007(9): 801-805. doi:  10.3969/j.issn.1001-5078.2007.09.001
    [2]
    Bhan R K, Dhar V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization[J]. Opto-Electronics Review, 2019, 27(2): 174-193. doi:  10.1016/j.opelre.2019.04.004
    [3]
    Philip Klipstein, Daniel Aronov, Michael ben Ezra, et al. Recent progress in InSb based quantum detectors in Israel[J]. Infrared Physics & Technology, 2013, 59: 172-181. http://www.onacademic.com/detail/journal_1000035936383110_429d.html
    [4]
    Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154. http://www.researchgate.net/profile/Antoni_Rogalski/publication/241112884_Recent_progress_in_HgCdTe_infrared_detector_technology/links/5524e12e0cf22e181e73b04e.pdf
    [5]
    Hoffman A W, Corrales E, Love P J, et al. 2K×2K InSb for astronomy[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5499: 59-67.
    [6]
    HA H D, TANG Z, LU H D, et al. Design and simulation of a novel flip-chip structure for THz detector package[J]. Microsystem Technologies, 2016, 23(7): 1-8. doi:  10.1007/s00542-016-3021-1
    [7]
    MENG Q D, ZHANG X L, LV Y Q, et al. Function reconsideration of indium bump in InSb IRFPAs[J]. Optical and Quantum Electronics, 2019, 51(9): 304.1-304.13. doi:  10.1007/s11082-019-2021-7
    [8]
    陈星, 华桦, 何凯, 等. 红外焦平面探测器封装结构热应力分析[J]. 激光与红外, 2014(6): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201406013.htm

    CHEN Xing, HUA Hua, HE Kai, et al. Thermal stress analysis of IRFPA packaging assembly[J]. Laser & Infrared, 2014(6): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201406013.htm
    [9]
    王雯, 张小雷, 吕衍秋, 等. Si基InSb红外焦平面阵列探测器的研究[J]. 红外与激光工程, 2014(5): 1359-1363. doi:  10.3969/j.issn.1007-2276.2014.05.001

    WANG Wen, ZHANG Xiaolei, LV Yanqiu, et al. InSb infrared focal plane arrays detector based on Si wafer[J]. Infrared and Laser Engineering, 2014(5): 1359-1363. doi:  10.3969/j.issn.1007-2276.2014.05.001
    [10]
    ZHANG X L, MENG Q D, ZHANG L W, et al. Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock[J]. Infrared Physics & Technology, 2013, 63: 28-34.
    [11]
    MENG Q D, ZHANG X L, LV Y Q, et al. Local delamination of InSb IRFPAs in liquid nitrogen shock tests[J]. Infrared Physics & Technology, 2017, 86: 207-211.
    [12]
    陈星. 碲镉汞红外焦平面探测器可靠性相关技术研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    CHEN Xing. Research on the Related Technology of HgCdTe Infrared Focal Plane Detector Reliability[D]. Shanghai: Shanghai Institute of Technology Physics, Chinese Academy of Sciences, 2014.
    [13]
    赵玉红. InSb红外焦平面探测器结构优化研究[D]. 洛阳: 河南科技大学, 2016.

    ZHAO Y H. Optimization of Structure of InSb Infrared Focal Plane Array[D]. Luoyang: Henan University of Science and Technology, 2016.
    [14]
    Kuzmenko N K. BCS universal ratios in finite systems[J]. Physica C: Superconductivity and its Applications, 2020, 576: 1353709. http://www.sciencedirect.com/science/article/pii/S0921453420300332
    [15]
    Hsueh, C H. Thermal stresses in elastic multilayer systems[J]. Thin Solid Films, 2002, 418: 182-188. http://www.onacademic.com/detail/journal_1000034583558710_41a3.html
    [16]
    Hsueh, C H, Luttrell C R, Lee S, et al. Interfacial peeling moments and shear forces at free edges of multilayers subjected to thermal stresses[J]. J. Am. Chem. Soc. , 2006, 89: 1632-1638. http://www.researchgate.net/profile/Chun-Hway_Hsueh/publication/229870518_Interfacial_Peeling_Moments_and_Shear_Forces_at_Free_Edges_of_Multilayers_Subjected_to_Thermal_Stresses/links/00b7d523d4a135cc8a000000
    [17]
    ZHANG X L, MENG Q D, LV Y Q, et al. Assessment of InSb infrared detector arrays assembly procedure employing ANSYS[J]. Optical and Quantum Electronics, 2019, 51(4): 1-8. http://www.onacademic.com/detail/journal_1000042271909399_7d60.html
    [18]
    Kanno T, Wada H, Nagashima M, et al. 256×256 element HgCdTe hybrid IRFPA for 8- to 10-μm band[C]//Proceedings of SPIE-The International Society for Optical Engineering, 1995, 2552: doi: 10.1117/12.218237.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (154) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return