Citation: | ZENG Jiahui, HE Feng, WANG Zhenxiang, LI Songhui, LIU Bing, JIANG Lijun. Temperature and Pressure Compensation Algorithm of Laser Oxygen Partial Pressure Sensor Based on BP Neural Network[J]. Infrared Technology , 2024, 46(11): 1245-1250. |
Considering the influence of temperature and pressure on the measurement of the partial pressure of oxygen using TDLAS technology, a temperature and pressure compensation algorithm for laser oxygen partial pressure sensors is proposed for eliminating these effects. The laser oxygen partial pressure sensor was constructed using an analog circuit, and the measured second-harmonic peak, temperature, and pressure values were uploaded to the master computer through an electrical connector, which performed temperature and pressure compensation using the BP neural network temperature and a pressure compensation algorithm to obtain accurate oxygen partial pressure values. The experimental results show that the algorithm can achieve compensation for the measured partial pressure of oxygen, and that the error of the partial pressure of the oxygen measurement is less than ±1 kPa, which meets the requirements of aerospace, aviation and other fields, and has a desirable application prospect.
[1] |
张旭, 郭腾霄, 杨柳, 等. 基于近红外TDLAS检测技术的甲烷浓度场重建研究[J]. 红外技术, 2018, 40(6): 603-611. http://hwjs.nvir.cn/article/id/hwjs201806014
ZHANG X, GUO X T, YANG L, et al. Reconstruction of methane concentration field based on near-infrared TDLAS detection technique[J]. Infrared Technology, 2018, 40(6): 603-611. http://hwjs.nvir.cn/article/id/hwjs201806014
|
[2] |
陈剑虹, 孙超越, 林志强, 等. 基于TDLAS技术的CO2浓度检测方法研究[J]. 电子测量与仪器学报, 2022, 36(6): 229-235.
CHEN J H, SUN C Y, LIN Z Q, et al. Research on CO2 concentration detection method based on TDLAS technology[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(6): 229-235.
|
[3] |
赵成龙, 黄丹飞, 刘智颖, 等. 开放型TDLAS-WMS技术CO2痕量气体检测[J]. 光子学报, 2022, 51(2): 333-342.
ZHAO C L, HUANG D F, LIU Z Y, et al. Open TDLAS-WMS technology for CO2 trace gas detection[J]. Journal of Photonics, 2022, 51(2): 333-342.
|
[4] |
甄杨. 基于TDLAS逃逸氨检测系统压力影响的研究[J]. 自动化与仪表, 2019, 34(7): 44-47.
ZHEN Y. Study on the pressure effect of fugitive ammonia detection system based on TDLAS[J]. Automation and Instrumentation, 2019, 34(7): 44-47.
|
[5] |
申凯. 负压下甲烷浓度非线性压力补偿模型[J]. 煤炭技术, 2018, 37(4): 161-163. DOI: 10.13301/j.cnki.ct.2018.04.063
SHEN K. Nonlinear pressure compensation model for methane concentration under negative pressure[J]. Coal Technology, 2018, 37(4): 161-163. DOI: 10.13301/j.cnki.ct.2018.04.063
|
[6] |
ZHU X, YAO S, REN W, et al. TDLAS monitoring of carbon dioxide with temperature compensation in power plant exhausts[J]. Applied Sciences, 2019, 9(3): 442. DOI: 10.3390/app9030442
|
[7] |
Alorifi F, Ahmed Ghaly S M, Shalaby M Y, et al. Analysis and detection of a target gas system based on TDLAS & LabVIEW[J]. Engineering, Technology & Applied Science Research, 2019, 9(3): 4196-4199.
|
[8] |
刘媛媛, 刘业森, 郑敬伟, 等. BP神经网络和数值模型相结合的城市内涝预测方法研究[J]. 水利学报, 2022, 53(3): 284-295.
LIU Y Y, LIU Y S, ZHENG J W, et al. Research on urban flood prediction method combining BP neural network and numerical model[J]. Journal of Water Resources, 2022, 53(3): 284-295.
|
[9] |
李其真, 徐磊, 张慧, 等. 基于BP神经网络的宽频域特定间谐波优化PWM控制方法研究[J]. 武汉大学学报(工学版), 2022, 55(9): 958-965.
LI Q Z, XU L, ZHANG H, et al. Research on the optimal PWM control method based on BP neural network for inter-specific harmonics in wide frequency domain[J]. Journal of Wuhan University (Engineering Edition), 2022, 55(9): 958-965.
|
[10] |
朱菊香, 谷卫, 罗丹悦, 等. 基于PSO优化BP神经网络的多传感器数据融合[J]. 中国测试, 2022, 48(8): 94-100.
ZHU J X, GU W, LUO D Y, et al. Multi-sensor data fusion based on PSO optimised BP neural network[J]. China Test, 2022, 48(8): 94-100.
|
[11] |
行鸿彦, 邹水平, 徐伟, 等. 基于PSO-BP神经网络的湿度传感器温度补偿[J]. 传感技术学报, 2015, 28(6): 864-869. DOI: 10.3969/j.issn.1004-1699.2015.06.015
HANG H Y, ZOU S P, XU W, et al. Temperature compensation of humidity sensor based on PSO-BP neural network[J]. Journal of Sensing Technology, 2015, 28(6): 864-869. DOI: 10.3969/j.issn.1004-1699.2015.06.015
|
[12] |
王彪, 连厚泉, 俞泳波, 等. 采用BP神经网络补偿的激光气体检测系统研制[J]. 激光杂志, 2022, 43(8): 19-23.
WANG B, LIAN H Q, YU Y B, et al. Development of laser gas detection system using BP neural network compensation[J]. Laser Journal, 2022, 43(8): 19-23.
|
[13] |
靳健. 载人航天器组合体氧分压控制仿真分析[J]. 航天器工程, 2017, 26(1): 50-57.
JIN J. Simulation analysis of oxygen partial pressure control of manned spacecraft assemblies[J]. Spacecraft Engineering, 2017, 26(1): 50-57.
|
[14] |
马砺, 范新丽, 张朔, 等. 基于TDLAS技术的CH4气体检测与温度补偿方法[J]. 光谱学与光谱分析, 2021, 41(11): 3632-3638.
MA L, FAN X L, ZHANG S, et al. CH4 gas detection and temperature compensation method based on TDLAS technology[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3632-3638.
|
[1] | LIU Wenfang, LEI Jin, WU Duo. A Temperature Compensation and Calibration Method for Thermal Infrared Array Sensor[J]. Infrared Technology , 2024, 46(9): 1092-1098. |
[2] | JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration[J]. Infrared Technology , 2023, 45(6): 671-677. |
[3] | WANG Li, XIE Xiaohuai, ZHANG Yichi. Infrared Image-based ISSA-BP Neural Network for Airborne Circuit Board Chip Fault Diagnosis[J]. Infrared Technology , 2023, 45(3): 241-248. |
[4] | LU Zhifei, LIU Haoyu, CHEN Wenliang, WANG Xiangjun. Accuracy Compensation Method for Infrared Human Body Temperature Measurement Accuracy[J]. Infrared Technology , 2021, 43(9): 895-901. |
[5] | YANG Qingzhi, WANG Yuxiang, XU Hong. Design of Portable Infrared thermometer and Temperature Compensation Technology[J]. Infrared Technology , 2021, 43(6): 597-606. |
[6] | DU Yuxi, HU Zhenqi, GE Yunhang, HUANG Hua, CHEN Ruitao, WANG Yong, WANG Zhimeng. Distance Influence and Compensation of Infrared Temperature Measurement with Different Intensity Heat Sources[J]. Infrared Technology , 2019, 41(10): 976-981. |
[7] | YAN Xinjie, LIN Yu, LI Jian, ZHANG Jin, LIN Dandan. Compensation Model of MEMS Gyroscope's Null Shift Based on Temperature Constraint Algorithm[J]. Infrared Technology , 2017, 39(1): 73-80. |
[8] | LI Dongdong, HU Mingyong, WU Haiyan, ZHAO Jinbiao. The Design of Compensation Mechanism at Low Temperature of -213℃[J]. Infrared Technology , 2016, 38(8): 659-665. |
[9] | MAO Qibo, YU Zhenhong, WANG Xiangchun. IR Gas Sensor Temperature Compensation Based on Improved PSO Algorithm[J]. Infrared Technology , 2016, 38(6): 499-504. |
[10] | Selection of Working Wavelengths of Dual-Wavelength Temperature Measurement in Drop Tubes[J]. Infrared Technology , 2004, 26(6): 38-40. DOI: 10.3969/j.issn.1001-8891.2004.06.010 |