LU Zhifei, LIU Haoyu, CHEN Wenliang, WANG Xiangjun. Accuracy Compensation Method for Infrared Human Body Temperature Measurement Accuracy[J]. Infrared Technology , 2021, 43(9): 895-901.
Citation: LU Zhifei, LIU Haoyu, CHEN Wenliang, WANG Xiangjun. Accuracy Compensation Method for Infrared Human Body Temperature Measurement Accuracy[J]. Infrared Technology , 2021, 43(9): 895-901.

Accuracy Compensation Method for Infrared Human Body Temperature Measurement Accuracy

More Information
  • Received Date: September 28, 2020
  • Revised Date: December 08, 2020
  • To address the problems of low measurement accuracy and limited use conditions of existing human body temperature measurement schemes, a non-contact human body temperature measurement accuracy compensation method based on infrared thermal imaging is studied. Considering the influence of temperature measurement devices and environments on the measurement accuracies, we need to solve the problems of infrared camera output values drifting with time, periodic signal chopping of an infrared camera, constant change in temperature measurement distance, and frequency domain noise of the temperature output value. To solve these problems, a comprehensive temperature measurement accuracy compensation method is proposed to effectively reduce the temperature measurement error. The experiment showed that the errors in human body temperature measurement under different distances were less than 0.2℃ using the precision compensation method in this study, which can realize accurate human body temperature measurement.
  • [1]
    李鹏程. 基于红外测温技术的变电设备缺陷诊断分析[D]. 北京: 华北电力大学, 2014.

    LI Pengcheng. The Research on the Device Defect Diagnosis Method Based on Infrared Temperature Measurement[D]. Beijing: North China Electric Power University, 2014.
    [2]
    乐启清. 红外热成像检测技术在沥青混合料制备过程中应用研究[D]. 西安: 长安大学, 2014.

    LE Qiqing. Study on the Application of Infrared Thermal Imaging Detection Technology in the Process of Asphalt Mixture Production Preparation[D]. Xi'an: Chang'an University, 2014.
    [3]
    王丰, 吴爱华. 红外测温技术在高温液体连续测温系统中的应用[J]. 冶金自动化, 2007(6): 47-50. DOI: 10.3969/j.issn.1000-7059.2007.06.012

    WANG Feng, WU Aihua. Application of infrared technique in continuous temperaturemeasuringsystem of high temperature liquid[J]. Metallurgical Industry Automation, 2007(6): 47-50. DOI: 10.3969/j.issn.1000-7059.2007.06.012
    [4]
    葛泽勋. 医用红外测温仪及其关键技术研究[D]. 长春: 长春理工大学, 2019.

    GE Zexun. Research on Medical Infrared Thermometer and the Key Technology[D]. Changchun: Changchun University of technology, 2019
    [5]
    周汪明. 超高精度人体热成像测温助力疫情防控[J]. 中国安全防范技术与应用, 2020(1): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-AQFF202001007.htm

    ZHOU Wangming. Ultra high precision human thermal imaging temperature measurement helps epidemic prevention and control[J]. China Security Protection Technology and Application, 2020(1): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-AQFF202001007.htm
    [6]
    王华伟. 基于红外热成像的温度场测量关键技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.

    WANG Huawei. Research on the Key Technologies of Temperature Field Measurement Based on Thermal Infrared Imager[D]. Xi'an: Xi'an Institute of Optics and Precision Mechnics, Chinese Academy of Sciences, 2013.
    [7]
    肖作超, 刘斌, 魏建程. 红外热成像技术与人工智能技术创新融合的探析[J]. 中国安防, 2020(5): 30-34. DOI: 10.3969/j.issn.1673-7873.2020.05.007

    XIA0 Zuochao, LIU Bin, WEI Jiancheng. On the innovative integration of infrared thermal imaging technology and artificial intelligence technology[J]. China Security & Protection, 2020(5): 30-34. DOI: 10.3969/j.issn.1673-7873.2020.05.007
    [8]
    杨立, 杨桢. 红外热成像测温原理与技术[M]. 北京: 科学出版社, 2012.

    YANG Li, YANG Zhen. Principle and technology of infrared thermal imaging temperature measurement[M]. Beijing: Science Press, 2012.
    [9]
    苏佳伟, 石俊生, 汪炜穑. 距离对红外热像仪测温精度影响及提高精度的实验研究[J]. 红外技术, 2013, 35(9): 587-590. http://hwjs.nvir.cn/article/id/hwjs201309012

    SU Jiawei, SHI Junsheng, WANG Weise. Experimental Study of Infrared Thermal Imagers about Influence of Distance for Temperature Measurement Accuracy and Method of Improving Accuracy[J]. Infrared Technology, 2013, 35(9): 587-590. http://hwjs.nvir.cn/article/id/hwjs201309012
    [10]
    阳红玉. 无线红外人体测温系统的研发[D]. 长沙: 中南林业科技大学, 2015.

    YANG Hongyu. The Development of Wireless Infrared Temperature Measurement System[D]. Changsha: Central South University of Forestry and Technology, 2015
    [11]
    XU D, Ricci E, Ouyang W, et al. Multi-scale continuous crfs as sequential deep networks for monocular depth estimation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 5354-5362.
    [12]
    Kuznietsov Y, Stuckler J, Leibe B. Semi-supervised deep learning for monocular depth map prediction[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 6647-6655.
    [13]
    中国标准化与信息分类编码研究所. 成年人头面部尺寸GB/T 2428-1998[S], 1998.

    China National Institute of Standardization. Head-face dimensions of adults. GB/T 2428-1998[S], 1998.
    [14]
    GUO X, LI S, YU J, et al. PFLD: A practical facial landmark detector[J/OL]. arXiv preprint arXiv: 1902.10859, 2019.
    [15]
    DONG X, YAN Y, OUYANG W, et al. Style aggregated network for facial landmark detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 379-388.
    [16]
    Kumar A, Chellappa R. Disentangling 3d pose in a dendritic cnn for unconstrained 2d face alignment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 430-439.
  • Related Articles

    [1]ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211.
    [2]GUO Xiangxiang, HAN Penglei. Effect of Orifice Size on Flow Stability of Shape Memory Alloy Self-Regulated Cryocoolers[J]. Infrared Technology , 2021, 43(6): 607-613.
    [3]ZHAO Heng, CHANG Le, LI Tingtao, WU Yongxiang, ZHAO Xuefeng, LI Xiaofeng. Study on Cs-O Activation Technology of Multi-alkali Photocathode[J]. Infrared Technology , 2018, 40(7): 695-700.
    [4]NIU Sen, GAO Xiang, LIU Lu, YUAN Yuan, GUO Xin, CHEN Chang, YANG Shuning. Influence of Cs, O Activation on Spectral Response Characteristics of GaAsP Photocathode[J]. Infrared Technology , 2018, 40(2): 189-192.
    [5]ZHANG Weigang, XU Guoyue, XUE Lianhai. Preparation and Near-infrared Absorption Properties of Polyurethane/Sm2O3 Composite Coatings[J]. Infrared Technology , 2016, 38(2): 102-106.
    [6]LI Xiao-feng, JIANG Yun-long, LI Jing-wen, JI Ming, LI Jin-sha, ZHANG Qin-dong. Study on Spectral Response beyond Cut off of Cs2Te Ultra Violet Photo Cathode[J]. Infrared Technology , 2015, (12): 1068-1073.
    [7]LI Xiao-feng, ZHAO Xue-feng, ZHANG Kun-lin, LI Quan-bao, WANG Zhi-hong. Study on Rb2Te(Cs) Solar Blind Ultraviolet Cathode[J]. Infrared Technology , 2013, (9): 581-586.
    [8]Study on Variation of Work Function and Electron Transition of Multi Alkali Cathode during Cs Activation and Cs-Sb Activation[J]. Infrared Technology , 2013, (4): 202-206.
    [9]GUO Xiang-yang, CHANG Ben-kang, QIAO Jian-liang, WANG Xiao-hui. Comparison of Stability of GaN and GaAs Photocathode[J]. Infrared Technology , 2010, 32(2): 117-120. DOI: 10.3969/j.issn.1001-8891.2010.02.014
    [10]Calculation of Electron Surface Escape Probability of GaAs∶Cs-O NEA Photocathodes[J]. Infrared Technology , 2002, 24(3): 27-30. DOI: 10.3969/j.issn.1001-8891.2002.03.007
  • Cited by

    Periodical cited type(3)

    1. 吕行,富容国,常本康,郭欣,王芝. 透射式GaAs光电阴极性能提高以及结构优化. 物理学报. 2024(03): 250-256 .
    2. 廖宇翔,王子辰,唐林,冯俞铭,赵小艳,刘頔威,张开春. 基于Geant4-CST联合仿真的条纹变像管光电子产生与控制. 光学学报. 2024(03): 308-315 .
    3. 严仕凯,司曙光,王兴超,任玲,金睦淳,江涛,王亮,吴凯,金真,黄国瑞,涂蕴超. 阴极制备工艺对高温光电倍增管性能的影响. 光学学报. 2023(23): 28-35 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return