LIANG Xiuman, ZHAO Jiayang, YU Haifeng. Lightweight Underwater Target Detection Algorithm Based on YOLOv8[J]. Infrared Technology , 2024, 46(9): 1015-1024.
Citation: LIANG Xiuman, ZHAO Jiayang, YU Haifeng. Lightweight Underwater Target Detection Algorithm Based on YOLOv8[J]. Infrared Technology , 2024, 46(9): 1015-1024.

Lightweight Underwater Target Detection Algorithm Based on YOLOv8

More Information
  • Received Date: June 24, 2024
  • Revised Date: July 21, 2024
  • To address the problems of misdetection, omission detection, and low detection efficiency when detecting underwater targets due to the complex underwater environment, a lightweight underwater target detection algorithm with an improved YOLOv8 model is proposed. First, to ameliorate the problem of insufficient feature fusion in the neck network, the neck network of YOLOv8 is fused with a BiFPN bidirectional feature pyramid structure to improve the detection of the small target layer. Second, to address the problem of the large number of parameters of the convolution module in the network and high computational complexity, an Adaptive-Attention Down-Sampling(AADS) module is designed to replace the convolution module in the backbone network to reduce the number of model parameters and amount of computation. Finally, Large Separable Kernel Attention (LSKA) is introduced to strengthen the feature extraction capability such that the model can focus on important information more accurately and improve target detection accuracy. The experimental results show that in the underwater target detection dataset, the improved algorithm improves the average detection accuracy by 1.4%, reduces the number of model parameters by 43.3%, and reduces the computational complexity of the model by 15.9% when compared with YOLOv8. This realizes a good balance between detection accuracy and detection speed.

  • [1]
    SHEN Linghao, XIA Haisheng, ZHANG Xun, et al. U2PNet: an unsupervised underwater image-restoration network using polarization[J]. IEEE Transactions on Cybernetics, 2024: 1-14. Doi: 10.1109/TCYB. 2024.3365693.
    [2]
    Yeh C H, LIN C H, KANG L W, et al. Lightweight deep neural network for joint learning of underwater object detection and color conversion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(11): 6129-6143.
    [3]
    周辉奎, 章立, 胡素娟. 改进直方图匹配和自适应均衡的水下图像增强[J]. 红外技术, 2024, 46(5): 532-538. http://hwjs.nvir.cn/article/id/6348ba90-16a9-4a8c-b7c8-7f9671176662

    ZHOU Huikui, ZHANG Li, HU Sujuan. Underwater image enhancement based on improved histogram matching and adaptive equalization[J]. Infrared Technology, 2024, 46(5): 532-538. http://hwjs.nvir.cn/article/id/6348ba90-16a9-4a8c-b7c8-7f9671176662
    [4]
    SHEN L, Reda M, ZHANG X, et al. Polarization-driven solution for mitigating scattering and uneven illumination in underwater imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4202615.
    [5]
    XU S, ZHANG M, SONG W, et al. A systematic review and analysis of deep learning-based underwater object detection[J]. Neurocomputing, 2023, 527: 204-232. DOI: 10.1016/j.neucom.2023.01.056
    [6]
    REN S, HE K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
    [7]
    LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision–ECCV, 2016: 21-37.
    [8]
    WANG C Y, Bochkovskiy A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
    [9]
    ZENG L, SUN B, ZHU D. Underwater target detection based on Faster R-CNN and adversarial occlusion network[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104190. DOI: 10.1016/j.engappai.2021.104190
    [10]
    SONG P, LI P, DAI L, et al. Boosting R-CNN: reweighting R-CNN samples by RPN's error for underwater object detection[J]. Neurocomputing, 2023, 530: 150-164. DOI: 10.1016/j.neucom.2023.01.088
    [11]
    YU G, CAI R, SU J, et al. U-YOLOv7: a network for underwater organism detection[J]. Ecological Informatics, 2023, 75: 102108. DOI: 10.1016/j.ecoinf.2023.102108
    [12]
    HUA X, CUI X, XU X, et al. Underwater object detection algorithm based on feature enhancement and progressive dynamic aggregation strategy[J]. Pattern Recognition, 2023, 139: 109511. DOI: 10.1016/j.patcog.2023.109511
    [13]
    XU X, LIU Y, LYU L, et al. MAD-YOLO: a quantitative detection algorithm for dense small-scale marine benthos[J]. Ecological Informatics, 2023, 75: 102022. DOI: 10.1016/j.ecoinf.2023.102022
    [14]
    Terven J, Cordova-Esparza D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arxiv preprint arxiv: 2304.00501, 2023.
    [15]
    Al Muksit A, Hasan F, Emon M F H B, et al. YOLO-Fish: a robust fish detection model to detect fish in realistic underwater environment[J]. Ecological Informatics, 2022, 72: 101847. DOI: 10.1016/j.ecoinf.2022.101847
    [16]
    CHEN L, ZHENG M, DUAN S, et al. Underwater target recognition based on improved YOLOv4 neural network[J]. Electronics, 2021, 10(14): 1634. DOI: 10.3390/electronics10141634
    [17]
    LIU P, QIAN W, WANG Y. YWnet: A convolutional block attention-based fusion deep learning method for complex underwater small target detection[J]. Ecological Informatics, 2024, 79: 102401. DOI: 10.1016/j.ecoinf.2023.102401
    [18]
    YU G, CAI R, SU J, et al. U-YOLOv7: a network for underwater organism detection[J]. Ecological Informatics, 2023, 75: 102108. DOI: 10.1016/j.ecoinf.2023.102108
    [19]
    Fayaz S, Parah S A, Qureshi G J, et al. Intelligent underwater object detection and image restoration for autonomous underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1726-1735. DOI: 10.1109/TVT.2023.3318629
    [20]
    Talaat F M, Zain Eldin H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural Computing and Applications, 2023, 35(28): 20939-20954. DOI: 10.1007/s00521-023-08809-1
    [21]
    ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
    [22]
    LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
    [23]
    LIN T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
    [24]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
    [25]
    ZHANG X, LIU C, YANG D, et al. Rfaconv: Innovating spatital attention and standard convolutional operation[J]. arxiv preprint arxiv: 2304.03198, 2023.
    [26]
    Ioannou Y, Robertson D, Cipolla R, et al. Deep roots: improving CNN efficiency with hierarchical filter groups[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1231-1240.
    [27]
    GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. DOI: 10.1007/s41095-023-0364-2
    [28]
    SUN Y, ZHENG W, DU X, et al. Underwater small target detection based on YOLOX combined with MobileViT and double coordinate attention[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1178. DOI: 10.3390/jmse11061178
  • Related Articles

    [1]LIU Xin, ZHANG Bin. Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network[J]. Infrared Technology , 2025, 47(4): 445-452.
    [2]LI Ziqian, BAN Yanwameng, LIU Yun, HE Dong, DU Rucai. Visible and Infrared Image Matching Method Based on Multi-Scale Feature Point Extraction[J]. Infrared Technology , 2025, 47(3): 351-357.
    [3]LIU Fukuan, LUO Suyun, HE Jia, ZHA Chaoneng. FVIT-YOLO v8: Improved YOLO v8 Small Object Detection Based on Multi-scale Fusion Attention Mechanism[J]. Infrared Technology , 2024, 46(8): 912-922.
    [4]LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multi-head Attention[J]. Infrared Technology , 2024, 46(7): 765-774.
    [5]MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509.
    [6]CHONG Fating, DONG Zhangyu, YANG Xuezhi, ZENG Qingwang. SAR and Multispectral Image Fusion Based on Dual-channel Multi-scale Feature Extraction and Attention[J]. Infrared Technology , 2024, 46(1): 61-73.
    [7]HAN Ziqiang, YUE Mingkai, ZHANG Cong, GAO Qi. Multimodal Fusion Detection of UAV Target Based on Siamese Network[J]. Infrared Technology , 2023, 45(7): 739-745.
    [8]HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology , 2023, 45(2): 143-149.
    [9]WANG Fang, LI Chuanqiang, WU Bo, YU Kun, JIN Chan, CHEN Yake, LU Yinghui. Infrared Small Target Detection Method Based on Multi-Scale Feature Fusion[J]. Infrared Technology , 2021, 43(7): 688-695.
    [10]Design and Lightweight Research of Cassegrain Drawtube in Space Remote Instrument[J]. Infrared Technology , 2006, 28(5): 253-256. DOI: 10.3969/j.issn.1001-8891.2006.05.002
  • Cited by

    Periodical cited type(3)

    1. 王曙光,石胜斌,胡春生. 一种对空红外弱小目标检测跟踪方法研究. 红外技术. 2020(04): 356-360 . 本站查看
    2. 杨昳,徐长彬,马玉莹,黄成章. 低信噪比下的红外弱小目标检测算法研究综述. 激光与红外. 2019(06): 643-649 .
    3. 沈旭,程小辉,王新政. 结合视觉注意力机制基于尺度自适应局部对比度增强的红外弱小目标检测算法. 红外技术. 2019(08): 764-771 . 本站查看

    Other cited types(6)

Catalog

    Article views (182) PDF downloads (52) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return