Citation: | LIU Xin, ZHANG Bin. Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network[J]. Infrared Technology , 2025, 47(4): 445-452. |
To solve the problem of low-resolution infrared images affecting viewing and aiming in the photoelectric field, a lightweight multi-scale aggregation network is proposed to enhance the resolution of the central region when the IR image is zoomed. First, the algorithm uses scale kernels of different sizes to extract feature information and employs a shallow residual structure to effectively aggregate local multi-scale residual features, thereby obtaining stronger feature representation capability. Then, a channel attention layer based on contrast perception is used to aggregate more multi-scale feature information. Finally, a high-resolution infrared image with rich detail and clarity is reconstructed. Simulation results show that the zooming method can extract fine multi-scale feature information without introducing additional parameters and can produce clear reconstruction results.
[1] |
邓伟, 陈建飞, 张胜. 深层跳线残差网络热红外图像超分辨重建[J]. 电光与控制, 2023, 30(3): 27-32.
DENG Wei, CHEN Jianfei, ZHANG Sheng. Super-resolution reconstruction of thermal infrared images based on deep skip connection residual network[J]. Electronics Optics and Control, 2023, 30(3): 27-32.
|
[2] |
唐中和, 王升哲, 霍建亮, 等. 基于局部结构变换域稀疏外观模型的目标跟踪[J]. 电视技术, 2017, 41(Z2): 140-146.
TANG Zhonghe, WANG Shengzhe, HUO Jianliang, et al. The target tracking based on sparse appearance model of local structure transformed domain[J]. The TV Engineering, 2017, 41(Z2): 140-146.
|
[3] |
左岑, 杨秀杰, 张捷, 等. 基于轻量级金字塔密集残差网络的红外图像超分辨增强[J]. 红外技术, 2021, 43(3): 251-257. http://hwjs.nvir.cn/article/id/a1540103-27df-466a-a058-1fd126ff5aec
ZUO Cen, YANG Xiujie, ZHANG Jie, et al. The super-resolution enhancement of the infrared images based on the lightweight and pyramid of dense residual network[J]. Infrared Technology, 2021, 43(3): 251-257. http://hwjs.nvir.cn/article/id/a1540103-27df-466a-a058-1fd126ff5aec
|
[4] |
ZHANG X, LI C, MENG Q, et al. Infrared image super resolution by combining compressive sensing and deep learning[J]. Sensors, 2018, 18(8): 2587. DOI: 10.3390/s18082587
|
[5] |
ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 2021, 146: 106717. DOI: 10.1016/j.optlaseng.2021.106717
|
[6] |
HUANG Y, JIANG Z, LAN R, et al. Infrared image super-resolution via transfer learning and PSRGAN[J]. IEEE Signal Processing Letters, 2021, 28: 982-986. DOI: 10.1109/LSP.2021.3077801
|
[7] |
Mallat S, YU G. Super-resolution with sparse mixing estimators[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2889-2900. DOI: 10.1109/TIP.2010.2049927
|
[8] |
DONG C, Loy C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281
|
[9] |
杨明, 王璇, 高宏伟. 基于多级深度网络的高清晰度红外电子变倍算法[J]. 弹箭与制导学报, 2020, 40(4): 14-19.
YANG Ming, WANG Xuan, GAO Hongwei. The high-definition infrared electronic zoom algorithm based on multi-level deep network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(4): 14-19.
|
[10] |
CHEN X, WANG X, ZHOU J, et al. Activating more pixels in image super-resolution transformer[C]// IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2023: 236-248.
|
[11] |
LIANG J, ZENG H, ZHANG L. Details or artifacts: a locally discriminative learning approach to realistic image super-resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 5647-5656.
|
[12] |
HE Z, TANG S, YANG J, et al. Cascaded deep networks with multiple receptive fields for infrared image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(8): 2310-2322.
|
[13] |
左芝勇. 采用分裂Bregman的空间邻近目标红外超分辨算法[J]. 电讯技术, 2020, 60(7): 778-784.
ZUO Zhiyong. An infrared super-resolution algorithm using split bregman for closely spaced objects[J]. Telecommunication Engineering, 2020, 60(7): 778-784.
|
[14] |
QIN J, HUANGY, WEN W. Multi-scale feature fusion residual network for single image super-resolution[J]. Neuro Computing, 2020, 379: 334-342.
|
[15] |
HAI H, LI P, ZOU N, et al. End-to-end super-resolution for remote-sensing images using an improved multi-scale residual network[J]. Remote Sensing, 2021, 13(4): 666-672.
|
[16] |
Szegedy C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
|
[17] |
WANG Yingqian, YING Xinyi, WANG Longguang, et al. Light field super-resolution via adaptive feature remixing[J]. European Conference on Computer Vision, 2022: 230-247. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9394760
|
[18] |
CHEN C, GONG D, WANG H, et al. Learning spatial attention for face super-resolution[J]. IEEE Transactions on Image Processing, 2021, 30: 1219-1231.
|
[19] |
HU Jie, SHEN Li, SUN Gang. Deep convolutional neural networks with merge-and-run mappings[C]//International Journal of Computer Vision, 2018: 1379-1398.
|
[20] |
LIU Zhiwei, ZHOU Lei, GAO Yuting, et al. Large-scale object detection in the wild from imbalanced multi-labels[C]//IEEE Transactions on Image Processing, 2022: 1234-1247.
|
[21] |
HUI Z, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 2024-2032.
|
[22] |
LI Y, CAO J, LI Z, et al. Lightweight single image super-resolution with dense connection distillation network[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2021, 17(1s): 1-17.
|
[23] |
Agustsson E, Timofte R. Ntire 2017 challenge on single image super-resolution: Dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 126-135.
|
[24] |
YANG W, ZHANG X, TIAN Y, et al. Deep learning for single image super-resolution: a brief review[J]. IEEE Transactions on Multimedia, 2019, 21(12): 3106-3121. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8723565
|
[25] |
ZHANG Kai, LIANG Jingyun, Van Gool Luc, et al. Training real-world blind super-resolution with pure synthetic data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1401-1411.
|
[26] |
Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016: 1646-1654.
|
[27] |
Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017: 1025-1032.
|
[1] | WANG Zhen, LIU Lei. Infrared Image Segmentation of Power Equipments Based on Improved Watershed Algorithm[J]. Infrared Technology , 2025, 47(4): 484-492. |
[2] | XU Guangxian, ZHOU Weijie, MA Fei. Fusion of Hyperspectral and Multispectral Images Using a CNN Joint Multi-Scale Transformer[J]. Infrared Technology , 2025, 47(1): 52-62. |
[3] | YUAN Hongchun, ZHANG Bo, CHENG Xin. Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network[J]. Infrared Technology , 2024, 46(9): 975-983. |
[4] | LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multi-head Attention[J]. Infrared Technology , 2024, 46(7): 765-774. |
[5] | DU Nini, SHAN Kaidong, WANG Jianchao. HRformer: Hierarchical Regression Transformer for Infrared Small-Target Detection[J]. Infrared Technology , 2024, 46(2): 199-207. |
[6] | HU Chunan, WANG Fengqi, ZHU Donglin. Improved Sparrow Search Algorithm and Its Application in Infrared Image Segmentation[J]. Infrared Technology , 2023, 45(6): 605-612. |
[7] | LIU He, ZHAO Tiancheng, LIU Junbo, JIAO Lixin, XU Zhihao, YUAN Xiaocui. Deep Residual UNet Network-based Infrared Image Segmentation Method for Electrical Equipment[J]. Infrared Technology , 2022, 44(12): 1351-1357. |
[8] | ZHANG Lijuan, MEI Chang, LI Chaoran, ZHANG Run. Retinal Vessel Image Segmentation Based on RAU-net[J]. Infrared Technology , 2021, 43(12): 1222-1227,1233. |
[9] | ZHANG Lian, LI Mengtian, YU Songlin, GONG Yu, YANG Hongjie. An Infrared Image Segmentation Method Based on Improved Lazy Snapping Algorithm[J]. Infrared Technology , 2021, 43(4): 372-377. |
[10] | WANG Liebing, JIANG Xiongfei, SHI Chunguang, LI Huichong, MA Xiaolong. Infrared Small Target Detection Based on Image Filtering and Hough Transform[J]. Infrared Technology , 2020, 42(7): 683-687. |
1. |
刘祺,曹林,田澍,杜康宁,宋沛然,郭亚男. 用于遥感图像变化检测的结构感知多尺度混合网络. 激光与光电子学进展. 2024(14): 323-333 .
![]() | |
2. |
闵锋,刘彪,况永刚,毛一新,刘煜晖. 基于空间自适应和内容感知的红外小目标检测. 红外技术. 2024(07): 735-742 .
![]() | |
3. |
陈怡馨,马曾. 无线网络信息差分隐私的动态可搜索加密仿真. 计算机仿真. 2024(10): 424-427+442 .
![]() |