Citation: | YANG Yanchun, LEI Huiyun, YANG Wanxuan. Infrared and Visible Image Fusion Based on Fast Joint Bilateral Filtering and Improved PCNN[J]. Infrared Technology , 2024, 46(8): 892-901. |
To address the problems of detail loss, inconspicuous targets, and low contrast in infrared and visible image fusion, a fusion method combining fast joint bilateral filtering (FJBF) and an improved pulse-coupled neural network (PCNN) was proposed. The operational efficiency can be effectively improved by ensuring the quality of the fused image. First, the source images were decomposed by fast joint bilateral filtering. Second, to extract significant structure and target information, a weighted average fusion rule based on a visual saliency graph (VSM) was adopted for the basic layer image, and an improved pulse-coupled neural network model was adopted for the detail layer image. All parameters of the PCNN can be adjusted according to the input bands, and the fusion image was reconstructed using the superimposed fusion map of the base layer and the fusion map of the detail layer. The experimental results show that this method can significantly improve the image fusion effect and effectively retain important information, such as targets, background details, and edges.
[1] |
MA J Y, ZHANG H, SHAO Z F, et al. GANMC: A generative adversarial network with multi classification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation, 2021, 70: 5005014.
|
[2] |
蒋杰伟, 刘尚辉, 金库, 等. 基于FCM与引导滤波的红外与可见光图像融合[J]. 红外技术, 2023, 45(3): 249-256. http://hwjs.nvir.cn/article/id/67d60996-565d-4597-96a1-937255cc33cc
JIANG J W, LIU S H, JIN K, et al. Infrared and visible-light image fusion based on FCM and guided filtering [J]. Infrared Technology, 2023, 45(3): 249-256. http://hwjs.nvir.cn/article/id/67d60996-565d-4597-96a1-937255cc33cc
|
[3] |
ZHANG Z Y, ZHANG Y M, CAO Y F, et al. Infrared and visible airborne targets image fusion with applications to sense and avoid[J]. IFAC Papers On Line, 2020, 53(2): 14742-14747. DOI: 10.1016/j.ifacol.2020.12.1892
|
[4] |
MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[5] |
JIN H Y, WANG Y Y. A fusion method for visible and infrared images based on contrast pyramid with teaching learning based optimization[J]. Infrared Physics & Technology, 2014, 64: 134-142.
|
[6] |
LIU X H, CHEN Z B, QIN M Z. Infrared and visible image fusion using guided filter and convolutional sparse representation[J]. Opt. Precision Eng, 2018, 26(5): 1242-1253. DOI: 10.3788/OPE.20182605.1242
|
[7] |
林剑萍, 廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合[J]. 光学 精密工程, 2021, 29(6): 1406-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202106021.htm
LIN J P, LIAO Y P. NSST region image fusion based on fractional significance detection and quantum fireworks algorithm[J]. Optics and Precision Engineering, 2021, 29(6): 1406-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202106021.htm
|
[8] |
LIU Y, MIAO C Y, JI J H, et al. MMF: a multi scale MobileNet based fusion method for infrared and visible image[J]. Infrared Physics & Technology, 2021, 119: 103894.
|
[9] |
陈彦林, 王志社, 邵文禹, 等. 红外与可见光图像多尺度Transformer融合方法[J]. 红外技术, 2023, 45(3): 266-275. http://hwjs.nvir.cn/article/id/8d183327-f396-4c96-b8c4-24ab8acb6a44
CHEN Y L, WANG Z S, SHAO W Y, et al. Multi-scale transformer fusion method for infrared and visible images[J]. Infrared Technology, 2023, 45(3): 266-275. http://hwjs.nvir.cn/article/id/8d183327-f396-4c96-b8c4-24ab8acb6a44
|
[10] |
LI S T, KANG X D, HU J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. DOI: 10.1109/TIP.2013.2244222
|
[11] |
ZHAN K, KONG L G, LIU B, et al. Multimodal image seamless fusion[J]. Journal of electronic imaging, 2019, 28(2): 023027.
|
[12] |
JIAN L H, YANG X M, ZHOU Z L, et al. Multi scale image Fusion through rolling guidance filter[J]. Future Generation Computer Systems, 2018, 83(6): 310-325.
|
[13] |
KONG W W, CHEN Y P, LEI Y. Medical image fusion using guided filter random walks and spatial frequency in framelet domain[J]. Signal Processing, 2021, 181: 107921. DOI: 10.1016/j.sigpro.2020.107921
|
[14] |
FENG Y C, WU J, HU X H, et al. Medical image fusion using bilateral texture filtering[J]. Biomedical Signal Processing and Control, 2023, 85: 105004. DOI: 10.1016/j.bspc.2023.105004
|
[15] |
ZHANG Y G, ZHAO P, MA Y Z, et al. Multi-focus image fusion with joint guided image filtering[J]. Signal Processing: Image Communication, 2021, 92: 35-46.
|
[16] |
成飞飞, 付志涛, 黄亮, 等. 结合自适应PCNN的非下采样剪切波遥感影像融合[J]. 测绘学报, 2021, 50(10): 1380-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202110012.htm
CHENG F F, FU Z T, HUANG L, et al. Non-subsampled shearlet wave remote sensing image fusion combined with adaptive PCNN [J]. Chinese Journal of Surveying and Mapping, 2021, 50(10): 1380-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202110012.htm
|
[17] |
李向阳, 曹宇彤, 陈笑, 等. 基于自适应NSST-PCNN的红外与可见光图像融合方法研究[J]. 长春理工大学学报: 自然科学版, 2021, 44(5): 12-18. https://cdmd.cnki.com.cn/Article/CDMD-10110-1024330949.htm
LI X Y, CAO Y T, CHEN X, et al. Research on infrared and visible image fusion method based on adaptive NSST-PCNN[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(5): 12-18. https://cdmd.cnki.com.cn/Article/CDMD-10110-1024330949.htm
|
[18] |
TOET A. TNO image fusion dataset[DB/OL]. (2014). https//figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029.
|
[19] |
LIU Y, CHEN X, RABAB K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489.
|
[20] |
ZHANG Y, ZHANG L J, BAI X Z, et al. Infrared and visual image fusion through infrared feature extraction and visual information preservation[J]. Infrared Physics & Technology, 2017, 83: 227-237. http://www.sciencedirect.com/science/article/pii/S1350449517300725
|
[21] |
MA J L, ZHOU Z Q, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-13.
|
[22] |
LIU F, SHEN T S, MA X X. Image fusion of cross bilateral filtering and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005-1013.
|
[23] |
TANG L F, YUAN J T, ZHANG H, et al. PIA fusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83: 79-92.
|
[24] |
LI H, WU X J, JOSEF K. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72-86.
|
[25] |
ZHANG H, MA J Y. SDNet: A versatile squeeze and decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 2021, 129: 2761-2785.
|
[1] | QI Yanjie, HOU Qinhe. Infrared and Visible Image Fusion Combining Multi-scale and Convolutional Attention[J]. Infrared Technology , 2024, 46(9): 1060-1069. |
[2] | XING Yanchao, NIU Zhenhua. Infrared and Visible Image Fusion Based on Global Energy Features and Improved PCNN[J]. Infrared Technology , 2024, 46(8): 902-911. |
[3] | LI Qiuheng, DENG Hao, LIU Guihua, PANG Zhongxiang, TANG Xue, ZHAO Junqin, LU Mengyuan. Infrared and Visible Images Fusion Method Based on Multi-Scale Features and Multi-head Attention[J]. Infrared Technology , 2024, 46(7): 765-774. |
[4] | SHEN Yu, LIANG Li, WANG Hailong, YAN Yuan, LIU Guanghui, SONG Jing. Infrared and Visible Image Fusion Based on N-RGAN Model[J]. Infrared Technology , 2023, 45(9): 897-906. |
[5] | DI Jing, WANG Guodong, MA Shuai, LIAN Jing. Infrared and Visible Image Fusion Based on MSPCNN and FCM[J]. Infrared Technology , 2023, 45(1): 69-76. |
[6] | LI Yongping, YANG Yanchun, DANG Jianwu, WANG Yangping. Infrared and Visible Image Fusion Based on Transform Domain VGGNet19[J]. Infrared Technology , 2022, 44(12): 1293-1300. |
[7] | KUANG Chuwen, HE Wang. Object Detection Algorithm Based on Infrared and Visible Light Images[J]. Infrared Technology , 2022, 44(9): 912-919. |
[8] | XU Yunying, YANG Rui, HE Tianfu, LIU Shangwei, FAN Tairan, XU Chenchen. Local Fusion Algorithm of Infrared and Visible Light Images Based on Double-Branch Convolutional Neural Network[J]. Infrared Technology , 2022, 44(5): 521-528. |
[9] | QU Haicheng, WANG Yuping, GAO Jiankang, ZHAO Siqi. Mode Adaptive Infrared and Visible Image Fusion[J]. Infrared Technology , 2022, 44(3): 268-276. |
[10] | JIANG Jing, ZHANG Xue-song. Visible and Infrared Image Automatic Registration Algorithm[J]. Infrared Technology , 2010, 32(3): 137-141. DOI: 10.3969/j.issn.1001-8891.2010.03.004 |
1. |
张旭辉,解彦彬,杨文娟,张超,万继成,董征,王彦群,蒋杰,李龙. 煤矿井下采掘工作场景非均质图像去雾与增强技术. 煤田地质与勘探. 2025(01): 245-256 .
![]() | |
2. |
张福林,何云,彭望,曹胜中,刘卫国,孙鹏. 基于改进直方图和模糊估计的多层次水下图像增强方法. 无线电工程. 2025(03): 540-547 .
![]() | |
3. |
梁秀满,赵佳阳,于海峰. 基于YOLOv8的轻量化水下目标检测算法. 红外技术. 2024(09): 1015-1024 .
![]() |