基于FCM与引导滤波的红外与可见光图像融合

Infrared and Visible-Light Image Fusion Based on FCM and Guided Filtering

  • 摘要: 针对传统红外与可见光图像融合算法中存在的目标模糊、细节丢失、算法不稳定等问题,提出了一种基于模糊C均值聚类(Fuzzy C-means, FCM)与引导滤波的红外与可见光图像融合方法。原图像经过非下采样剪切波变换(Nonsubsampled Shearlet Transform, NSST)后对低频子带进行引导滤波增强,再利用FCM与双通道脉冲发放皮层模型(Dual Channel Spiking Cortical Model, DCSCM)结合对高低频子带进行融合,最后经NSST逆变换得到融合图像。实验结果表明,本文算法稳定,主观评价上所得融合图像目标明确,细节保留较为完整,客观评价上在标准差、互信息、平均梯度、信息熵和边缘保留因子等评价标准中表现优良。

     

    Abstract: To solve the problems of vague targets, detail loss, and algorithm instability in traditional infrared and visible-light image fusion algorithms, a fusion method based on fuzzy c-means (FCM) clustering and guided filtering is proposed. The low-frequency sub-band was enhanced by guided filtering after applying a non-subsampled shearlet transform (NSST) to the original image. The low- and high-frequency sub-bands were then fused using FCM clustering and a dual-channel spiking cortical model. Finally, the fused image was obtained using an inverse NSST transform. The experimental results showed that the proposed algorithm was stable, the fusion image had clear targets and relatively complete details in the subjective evaluation, and the algorithm had an excellent standard deviation, mutual information, average gradient, information entropy, and edge retention factor in the objective evaluation.

     

/

返回文章
返回